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Preface

These notes are quite detailed Course Notes which, perhaps, look rather
like a text book. They can not, however, be regarded as giving an exhaustive
treatment of statistics (such as you might �nd in a proper text). In con-
junction with any recommended text, you should use the material contained
here to:

� supplement lecture notes (if applicable);

� provide a starting point for your own private study.

The material has been structured by Chapter, and section, rather than
as a sequence of lectures, and aims to provide a coherent development of
the subject matter. However, a programme of lectures could easily be con-
structed to follow the same development and include some, but not all, of
the material contained in this document. Following an Introduction (which
provides an overview) there are 15 substantive Chapters and at the end of
each, and corresponding sequence of lectures (if appropriate), you should
access any recommended additional learning resources in order to deepen
your learning.

At the end of this document, in an Appendix, there are Standard Normal
Tables and Student-t tables. Don�t concern yourself with them at present,
their use be described when appropriate.

These notes also contain Exercises consisting of a number of questions
designed to promote your learning. These exercises also include work with
EXCEL and are included to illustrate how many of the standard statistical
techniques can be automated - thus removing much of the tedious calcula-
tion. Rudimentary knowledge of EXCEL is assumed.

Len Gill
Chris Orme
Denise Osborn
University of Manchester, 2003
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Introduction

The subject of statistics is concerned with scienti�c methods for collect-
ing, organizing, summarizing, presenting data (numerical information). The
power and utility of statistics derives from being able to draw valid conclu-
sions (inferences), and make reasonable decisions, on the basis the available
data. (The term statistics is also used in a much narrower sense when re-
ferring to the data themselves or various other numbers derived from any
given set of data. Thus we hear of employment statistics (% of people un-
employed), accident statistics, (number of road accidents involving drunk
drivers), etc.)

Data arise in many spheres of human activity and in all sorts of di¤erent
contexts in the natural world about us. Such data may be obtained as a
matter of course (e.g., meteorological records, daily closing prices of shares,
monthly interest rates, etc), or they may be collected by survey or experi-
ment for the purposes of a speci�c statistical investigation. An example of
an investigation using statistics was the Survey of British Births, 1970, the
aim of which was to improve the survival rate and care of British babies at
or soon after birth. To this end, data on new born babies and their moth-
ers were collected and analysed. The Family Expenditure Survey regularly
collects information on household expenditure patterns - including amounts
spent on lottery tickets.

In this course we shall say very little about how our data are obtained;
to a large degree this shall be taken as given. Rather, this course aims
simply to describe, and direct you in the use of, a set of tools which can be
used to analyse a given set of data. The reason for the development of such
techniques is so that evidence can be brought to bear on particular questions
(for example),

� Why do consumption patterns vary from individual to individual?

� Compared to those currently available, does a newly developed med-
ical test o¤er a signi�cantly higher chance of correctly diagnosing a
particular disease?

or theories/hypotheses, such as,

i
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� �The majority of the voting population in the UK is in favour of, a
single European Currency�

� �Smoking during pregnancy adversely a¤ects the birth weight of the
unborn child�

� �Average real earnings of females, aged 30 � 50; has risen over the
past 20 years�

which are of interest in the social/natural/medical sciences.
Statistics is all about using the available data to shed light on such

questions and hypotheses. At this level, there are a number of similari-
ties between a statistical investigation and a judicial investigation. For the
statistician the evidence comes in the form of data and these need to be in-
terrogated in some way so that plausible conclusions can be drawn. In this
course we attempt to outline some of the fundamental methods of statistical
interrogation which may be applied to data. The idea is to get as close to
the truth as is possible; although, as in a court of law, the truth may never
be revealed and we are therefore obliged to make reasonable judgements
about what the truth might be based on the evidence (the data) and our
investigations (analysis) of it.

For example, think about the following. Suppose we pick at random 100
male and 100 female, University of Manchester �rst year undergraduates
(who entered with A-levels) and recover the A-level points score for each of
the 200 students selected. How might we use these data to say something
about whether or not, in general, (a) female students achieve higher A-
level grades than males, or (b) female �rst year undergraduates are more
intelligent than �rst year undergraduate males ? How convincing will any
conclusions be?

We begin with some de�nitions and concepts which are commonly used
in statistics:
Some De�nitions and Concepts

� DATA: body of numerical evidence (i.e., numbers)

� EXPERIMENT: any process which generates data
For example, the following are experiments:

� select a number of individuals from the UK voting population and
how they will vote in the forthcoming General Election

��ipping a coin twice and noting down whether, or not, you get a
HEAD at each �ip

� interview a number of unemployed individuals and obtain infor-
mation about their personal characteristics (age, educational back-
ground, family circumstances, previous employment history, etc)
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and the local and national economic environment. Interview them
again at regular three-monthly intervals for 2 years in order to
model (i.e., say something about possible causes of) unemploy-
ment patterns

� to each of 10 rats, di¤ering dosage levels of a particular hormone
are given and, then, the elapsed time to observing a particular
(benign) reaction (to the hormone) in the each of the rats is
recorded.

An experiment which generates data for use by the statistician is often
referred to as sampling, with the data so generated being called a sample (of
data). The reason for sampling is that it would be impossible to interview
(at the very least too costly) all unemployed individuals in order to explain
shed light on the cause of unemployment variations or, or all members of
the voting population in order to say something about the outcome of a
General Election. We therefore select a number of them in some way (not
all of them), analyse the data on this sub-set, and then (hopefully) conclude
something useful about the population of interest in general. The initial
process of selection is called sampling and the conclusions drawn (about the
general population from which the sample was drawn) constitutes statistical
inference:

� SAMPLING: the process of selecting individuals (single items) from
a population.

� POPULATION: a description of the totality of items with which we
are interested. It will be de�ned by the issue under investigation.

� Sampling/experimentation yields a SAMPLE (of items), and it is the
sample which ultimately provides the data used in statistical analysis.

It is tremendously important at this early stage to re�ect on this and
to convince yourself that the results of sampling can not be known with
certainty. That is to say, although we can propose a strategy (or method)
whereby a sample is to be obtained from a given population, we can not
predict exactly what the sample will look like (i.e., what the outcome will
be) once the selection process, and subsequent collection of data, has been
completed. For example, just consider the outcome of the following sampling
process: ask 10 people in this room whether or not they are vegetarian;
record the data as 1 for yes and 0 for no/unsure. How many 1�s will you
get? The answer is uncertain, but will presumably be an integer in the range
0 to 10 (and nothing else).

Thus, the design of the sampling process (together with the sort of data
that is to be collected) will rule out certain outcomes. Consequently, al-
though not knowing exactly the sample data that will emerge we can list or
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provide some representation of what could possibly be obtained and such a
listing is called a sample space:

� SAMPLE SPACE: a listing, or representation, of all possible sam-
ples that could be obtained

The following example brings all of these concepts together and we shall
often use this simple scenario to illustrate various concepts:

� Example:

�Population: a coin which, when �ipped, lands either H (Head)
or T (Tail)

�Experiment/Sampling : �ip the coin twice and note down H or T

� Sample: consists of two items. The �rst item indicates H or T
from the �rst �ip; the second indicates H or T from the second
�ip

� Sample Space: {(H,H),(H,T),(T,H),(T,T)}; list of 4 possible
outcomes.

The above experiment yields a sample of size 2 (items or outcomes)
which, when obtained, is usually given a numerical code and it is this coding
that de�nes the data. If we also add that the population is de�ned by a fair
coin, then we can say something about how likely it is that any one of the
four possible outcomes will be observed (obtained) if the experiment were to
be performed. In particular, elementary probability theory (see section 3),
or indeed plain intuition, shows that each of the 4 possible outcomes are, in
fact, equally likely to occur if the coin is fair.

Thus, in general, although the outcome of sampling can not be known
with certainty we will be able to list (in some way) possible outcomes. Fur-
thermore, if we are also willing to assume something about the population
from which the sample is to be drawn then, although certainty is still not as-
sured, we may be able to say how likely (or probable) a particular outcome
is. This latter piece of analysis is an example of DEDUCTIVE REA-
SONING and the �rst 8 Chapters in this module are devoted to helping
you develop the techniques of statistical deductive reasoning. As suggested
above, since it addresses the question of how likely/probable the occurrence
of certain phenomena are, it will necessitate a discussion of probability.

Continuing the example above, suppose now that the experiment of �ip-
ping this coin twice is repeated 100 times. If the coin is fair then we have
stated (and it can be shown) that, for each of the 100 experiments, the 4 pos-
sible outcomes are equally likely. Thus, it seems reasonable to predict that
a (H,H) should arise about 25 times, as should (H,T), (T,H) and (T,T) -
roughly speaking. This is an example of deductive reasoning. On the other
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hand, a question you might now consider is the following: if when this exper-
iment is carried out 100 times and a (T,T) outcome arises 50 times, what
evidence does this provide on the assumption that the coin is fair? The
question asks you to make a judgement (an inference, we say) about the
coin�s fairness based on the observation that a (T,T) occurs 50 times. This
introduces the more powerful notion of statistical inference, which is the
subject matter of the sections 9� 16. The following brief discussion gives a
�avour of what statistical inference can do.

Firstly, data as used in a statistical investigation are rarely presented
for public consumption in raw form. Indeed, it would almost certainly be a
meaningless exercise. Rather they are manipulated, summarised and, some
would say, distorted! The result of such data manipulation is called a sta-
tistic:

� STATISTIC: the result of data manipulation, or any method or pro-
cedure which involves data manipulation.

Secondly, data manipulation (the production of statistics) is often per-
formed in order to shed light on some unknown feature of the population,
from which the sample was drawn. For example, consider the relationship
between a sample proportion (p) and the true or actual population propor-
tion (�) ; for some phenomenon of interest:

p = �+ error

where, say, p is the proportion of students in a collected sample of 100 who
are vegetarian and � is the proportion of all Manchester University students
who are vegetarian. (� is the upper case Greek letter pi ; it is not used here
to denote the number Pi = 3:14159:::.) The question is �what can p tell us
about �?�, when p is observed but � isn�t.

For p to approximate � it seems obvious that the error is required to
be �small�, in some sense. However, the error is unknown; if it were known
then an observed p would pinpoint � exactly. In statistics we characterise
situations in which we believe it is highly likely that the error is small
(i.e., less than some speci�ed amount). We then make statements which
claim that it is highly likely that the observed p is close to the unknown �.
Here, again, we are drawing conclusions about the nature of the population
from which the observed sample was taken; it is statistical inference.
Suppose, for example, that based on 100 students the observed proportion
of vegetarians is p = 0:3: The theory of statistics (as developed in this course)
then permits us to infer that there is a 95% chance (it is 95% likely) that the
interval (0:21; 0:39) contains the unknown true proportion �. Notice that
this interval is symmetric about the value p = 0:3 and allows for margin of
error of �0:09 about the observed sample proportion. The term margin of
error is often quoted when newspapers report the results of political opinion
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polls; technically it is called a sampling error - the error which arises from
just looking at a subset of the population in which we are interested and
not the whole population.

For this sort of thing to work it is clearly important that the obtained
sample is a fair (or typical) re�ection of the population (not atypical): such
samples are termed (simple) random samples. For example, we would
not sample students as they left a vegetarian restaurant in order to say
something about University student population as a whole! We shall signal
that samples are random in this way by using expressions like: �consider
a random sample of individuals�; �observations were randomly sampled�; �a
number of individuals were selected at random from an underlying popula-
tion�, etc.

In order to understand the construction of statistics, and their use in
inference, you need some basic tools of the trade, which are now described.
Notation and Tools of the Trade
Variables

� a variable is a label, with description, for an event or phenomenon of
interest. To denote a variable, we use upper case letters. For example,
X; Y; Z; etc are often used as labels.

� a lower case leter, x; is used to denote an observation obtained (actual
number) on the variable X: (Lower case y denotes an observation on
the variable Y; etc.)

� Example:
Let X = A-level points score. If we sample 4 individuals we obtain
4 observations and we label these 4 observations as x1 = ; x2 =
; x3= ; x4 = . (You can �ll in four numbers here.)
x1 denotes the �rst listed number (in this case, A-level points score),
x2 the second score, x3 the third and x4 the fourth.

In general, then, xi is used to denote a number - the ith observation (or
value) for the variable X; which is read simply as �x" �i�. The subscript i is
usually a positive integer (1; 2; 3; 4; etc), although terms like x0 and x�1 can
occur in more sophisticated types of analyses. Thus, we also use yi for values
of the variable with label Y: Other possibilities are zi; xj ; yk etc. Thus, the
label we may use for the variable is essentially arbitrary as is the subscript
we use to denote a particular observation on that variable.

� the values x1; x2; x3; x4; : : : ; xn denote a sample of n observations (n
numbers or values) for the variable X. The �dots�indicates that the
sequence continues until the subscript n is reached (e.g., if n = 10;
there are another 6 numbers in the sequence after x4): For ease of
notation we usually write this simply as x1; :::; xn:
Similarly, y1; : : : ; ym for a sample of m observations for the variable Y:



vii

Summation notation
The summation notation is used to signify the addition of a set of num-

bers. Let an arbitrary set of numbers be doted x1; ..., xn:

� the symbol
P
is used: the Greek letter capital sigma. English equiv-

alent is S, for sum.

And we have the following de�nition of
P
:

� x1 + x2 + : : :+ xn �
Pn
i=1 xi; or

nP
i=1
xi

which means add up the n numbers, x1 to xn. The expression
Pn
i=1 xi

is read as �the sum from i equals 1 to n of xi�, or �the sum over i; xi�

For example, the total A-level points score from the 4 individuals is:

x1 + x2 + x3 + x4 �
4X
i=1

xi = :

Note that for any n numbers, x1; : : : ; xn, the procedure which is de�ned
by
Pn
i=1 xi is exactly the same as that de�ned by

Pn
j=1 xj ; because

nX
i=1

xi = x1 + x2 + : : :+ xn =
nX
j=1

xj :

You might also encounter
Pn
i=1 xi expressed in the following ways:

�
P
i
xi or

P
i xi;

P
xi; or even,

P
x .

Moreover, since the labelling of variables, and corresponding observa-
tions, is arbitrary, the sum of n observations on a particular variable, can
be denoted equivalently as

Pn
k=1 yk = y1 + y2 + : : :+ yn; if we were to label

the variable as Y rather than X and use observational subscript of k rather
than i:
Rules of Summation

� Let c be some �xed number (e.g., let c = 2) and let x1; : : : ; xn denote
a sample of n observations for the variable X:

nX
i=1

(cxi) = cx1 + cx2 + : : :+ cxn = c(x1 + x2 + : : :+ xn) = c

 
nX
i=1

xi

!
In above sense c is called a constant (it does not have a subscript at-

tached). It is constant in relation to the variable X; whose values (denoted
xi) are allowed to vary from across observations (over i).

Notice that when adding numbers together, the orderr in which we add
them is irrelevant. With this in mind we have the following result:
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� Let y1; : : : ; yn be a sample of n observations on the variable labelled
Y :

nX
i=1

(xi + yi) = (x1 + y1) + (x2 + y2) + : : :+ (xn + yn)

= (x1 + x2 + : : :+ xn) + (y1 + y2 + : : :+ yn)

=

 
nX
i=1

xi

!
+

 
nX
i=1

yi

!

=
nX
i=1

xi +
nX
i=1

yi:

Combining the above two results we obtain the following:

� If d is another constant then
nX
i=1

(cxi + dyi) = c

 
nX
i=1

xi

!
+ d

 
nX
i=1

yi

!

= c
nX
i=1

xi + d
nX
i=1

yi:

cX + dY is known as a linear combination (of the variable X and the
variable Y ) and is an extremely important concept in the study of
statistics.

� And, �nally

nX
i=1

(xi + c) = (x1 + c) + (x2 + c) + :::+ (xn + c)

=

 
nX
i=1

xi

!
+ (n� c)

These sorts of results can be illustrated using the following simple ex-
ample:

� Example:

i : 1 2 3 4
xi : 3 3 4 1
yi : 4 4 2 3

c = 2
d = 3

(i)
P4
i=1 cxi = c

P4
i=1 xi;

(ii)
P4
i=1(xi + yi) =

P4
i=1 xi+

P4
i=1 yi;

(iii)
P4
i=1(cxi + dyi) = c

P4
i=1 xi + d

P4
i=1 yi:
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You should be able to verify these for yourselves as follows. Firstly,
the left hand side of (i) is

4X
i=1

cxi = (2� 3) + (2� 3) + (2� 4) + (2� 1)

= 6 + 6 + 8 + 2

= 22

and the right hand side of (i) is

c

4X
i=1

xi = 2� (3 + 3 + 4 + 1)

= 2� 11 = 22:

Establishing (ii) and (iii) follow in a similar way (try it by working out
separately the left hand side and right hand side of each of (ii) and
(iii).

HEALTH WARNING! However, beware of �casual� application of the
summation notation (think about what you�re trying to achieve). In the
above example

(iv)
P4
i=1 xiyi 6=

�P4
i=1 xi

��P4
i=1 yi

�
(v)

P4
i=1

�
xi
yi

�
6=
P4
i=1 xiP4
i=1 yi

:

In the case of the right hand side of (iv) is the �sum of the products�

4X
i=1

xiyi = 12 + 12 + 8 + 3 = 35;

whilst the right hand side is the �product of the sums� 
4X
i=1

Xi

! 
4X
i=1

Yi

!
= (3 + 3 + 4 + 1) (4 + 4 + 2 + 3) = 11� 13 = 143 6= 35:

Now, show that the left hand side of (v) is not equal to the right hand side
of (v).

Also, the square of a sum is not (in general) equal to the sum of the
squares. By which we mean: 

nX
i=1

xi

!2
6=

nX
i=1

y2i
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where x2i = (xi)
2; the squared value of xi: This is easily veri�ed since,

for example, (�1 + 1)2 6= (�1)2 + 12: Or, using the preceeding example,P4
i=1 x

2
i = 9 + 9 + 16 + 1 = 35; whilst

�P4
i=1 xi

�2
= (3 + 3 + 4 + 1)2 =

112 = 121:

� Example: Consider a group of 10 students (i.e., n = 10) out celebrating
on a Friday night, in a particular pub, and each by their own drinks.
Let xi denote the number of pints of beer consumed by individual i;
yi; the number of glasses of white wine; zi; the number of bottles of
lager. If only beer, wine and lager are consumed at prices (in pence)
of a for a pint of beer, b for a glass of white wine, c for a bottle of
lager, then the expenditure on drinks by individual i; denoted ei; is:
ei = axi+byi+czi:Whereas total expenditure on drinks is:

P10
i=1 ei =

a
P10
i=1 xi + b

P10
i=1 yi + c

P10
i=1 zi:
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Chapter 1

BASIC DESCRIPTIVE
STATISTICS

Raw data means collected (or sampled) data which have not been organised
numerically. An example would be the recorded heights of 100 male under-
graduates obtained from an anonymous listing of medical records. Data in
this form are rarely (if ever) informative. In order to highlight patterns of
interest, the data can be summarized in a number of ways. This is sometimes
called data reduction, since the raw data is reduced into a more manageable
form. The reduction process requires the construction of what are called
descriptive or summary statistics:

� Basic descriptive statistics provide an overview or summary of
the numerical evidence (data).

The construction of statistics involves manipulations of the raw data.
The constructed statistic can be pictorial (a graph or diagram) or numerical
(a table or number) and di¤erent statistics are designed to give di¤erent
sorts of information. We shall consider some of the more commonly used
(descriptive) statistics in this section. The calculations involved can be
tedious, but are fairly mechanical and relatively straightforward to apply
(especially if a suitable computer package is to hand, such as EXCEL). The
lecture presentation shall discuss these in a somewhat brief manner, with a
little more detail being contained in these notes which you can read at your
leisure.

Although descriptive statistics (or summaries) can be both pictorial and
numerical, their construction depends upon the type of data to hand

1.1 Types of data

Broadly speaking, by �data�we mean numerical values associated with some
variable of interest. However, we must not be overly complacent about such

3
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a broad de�nition; we must be aware of di¤erent types of data that may
need special treatment. Let us distinguish the following types of data, by
means of simple examples:

� NOMINAL/CATEGORICAL

�Examples? are given in the lecture

� ORDINAL

�Examples? are given in the lecture

� DATA WITH ACTUAL NUMERICAL MEANING

�Examples? are given in the lecture

�Interval scale data: indicates rank and distance from an arbi-
trary zero measured in unit intervals. An example is temperature
in Fahrenheit and Celsius scales.

�Ratio scale data: indicates both rank and distance from a nat-
ural (or common) zero, with ratios of two measurements having
meaning. Examples include weight, height and distance (0 is the
lower limit and, for example, 10 miles (16km) is twice as far as 5
miles (8km)), total consumption, speed etc.

Note that the ratio of temperature (Fharenheit over Celsius) changes as
the tempertaute changes; however, the ratio of distance travelled (miles over
kilometres) is always the same whatever distance is trevelled (the constant
ratio being about 5=8:)

Although one could provide examples of other sorts of data, the above
illustrate some of the subtle di¤erences that can occur. For the most part,
however, we will be happy to distinguish between just two broad classes of
data: discrete and continuous.

1.1.1 Discrete data

The variable, X; is said to be discrete if it can only ever yield isolated
values some of which (if not all) are often repeated in the sample. The
values taken by the variable change by discernible, pre-determined steps or
jumps. A discrete variable often describes something which can be counted;
for example, the number of children previously born to a pregnant mother.
However, it can also be categorical; for example, whether or not the mother
smoked during pregnancy.
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1.1.2 Continuous data

The variable, Y; is said to be continuous if it can assume any value taken
(more or less) from a continuum (a continuum is an interval, or range of
numbers). A nice way to distinguish between a discrete and continuous
variable is to consider the possibility of listing possible values. It is theoret-
ically impossible even to begin listing all possible values that a continuous
variable, Y; could assume. However, this is not so with a discrete variable;
you may not always be able to �nish the list, but at least you can make a
start.

For example, the birth-weight of babies is an example of a continuous
variable. There is no reason why a baby should not have a birth weight of
2500:0234 grams, even though it wouldn�t be measured as such! Try to list
all possible weights (in theory) bearing in mind that for any two weights that
you write down, there will always be another possibility half way between.
We see, then, that for a continuous variable an observation is recorded, as
the result of applying some measurement, but that this inevitably gives rise
to a rounding (up or down) of the actual value. (No such rounding occurs
when recording observations on a discrete variable.)

Finally, note that for a continuous variable, it is unlikely that values will
be repeated frequently in the sample, unless rounding occurs.

Other examples of continuous data include: heights of people; volume of
water in a reservoir; and, to a workable approximation, Government Expen-
diture. One could argue that the last of these is discrete (due to the �nite
divisibility of monetary units). However, when the amounts involved are of
the order of millions of pounds, changes at the level of individual pence are
hardly discernible and so it is sensible to treat the variable as continuous.

Observations are also often classi�ed as cross-section or time-series:

1.1.3 Cross-section data

Cross-section data comprises observations on a particular variable taken at
a single point in time. For example: annual crime �gures recorded by Police
regions for the year 1999; the birth-weight of babies born, in a particular
maternity unit, during the month of April 1998; initial salaries of graduates
from the University of Manchester, 2000. Note, the de�ning feature is that
there is no natural ordering in the data.

1.1.4 Time-series data

On the other hand, time-series data are observations on a particular vari-
able recorded over a period of time, at regular intervals. For example; per-
sonal crime �gures for Greater Manchester recorded annually over 1980-99;
monthly household expenditure on food; the daily closing price of a certain
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stock. In this case, the data does have a natural ordering since they are
measured from one time period to the next.

1.2 Some graphical displays

We shall now describe some simple graphical displays, which provide visual
summaries of the raw data. We consider just 3 types: those which can be
used with discrete data - the relative frequency diagram, or bar chart ; those
for use with continuous data - the histogram; and those which provide a
summary of the possible relationship between two variables - the scatter
plot. Each are introduced by means of a simple example.

1.2.1 Discrete data

Example: Consumption of beer, Mon-Fri (incl). A sample of n = 100 stu-
dents is taken, and their individual consumption of pints of beer during a
typical working week is recorded. By calculating the proportion, or percent-
age, of students who consume, respectively, 1; 2; 3; etc, pints of beer, the
relative frequency diagram can be constructed, as depicted in Figure
2.1.

RELATIVE FREQUENCY DIAGRAM
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Figure 1.1: Beer Consumption (Source: �ctitious)

This diagram, simply places a bar of height equal to the appropriate
proportion (or percentage) for each pint. Notice that the bars are separated
by spaces (i.e., they are isolated) which exempli�es the discrete nature of the
data. The term �relative frequency�simply means �percentage, or proportion,
in the sample�. Thus, we see from the diagram that the relative frequency
of 1 pint is 0:15; or 15%; this means that 15 of the sample of n = 100 drank
only 1 pint per week. Similarly, 5% did not drink any, whilst 42% of those
students questioned drink at most two pints of beer during the week!

� Relative frequency: If a sample consists of n individuals (or items),
and m � n of these have a particular characteristic, denoted A; then
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the relative frequency (or proportion) of characteristic A in the sample
is calculated as mn : The percentage of observations with characteristic
A in the sample would be

�
m
n � 100

�
%: E.g. 0:65 is equivalent to 65%:

1.2.2 Continuous data

Example: we have a sample of n = 87 observations, which record the time
taken (in completed seconds) for credit card customers to be served at Pic-
cadilly station Booking O¢ ce. The 87 observations (the raw data) are listed
as: 54; 63; 44; 60; 60; :::etc. Due to rounding, some recorded times are re-
peated (but not very often) and some are never repeated. (These are con-
tinuous data in reality: it is possible to wait 55:78654 seconds, but it will
not be recorded as such.) The data can be summarised, graphically, using
a histogram which is constructed as follows:

� Group the raw data into intervals/classes, not necessarily of the same
length:

� the data are continuous, so there must (in general) be no spaces
between intervals

� take into account the fact that the data often rounded or, as in
this case, measurements are recorded to the nearest second. That
is, note that if x = recorded time and t = actual time then x = 50
implies that 50 6 t < 51 or t 2 [50; 51), meaning �t is greater than
or equal to 50; but strictly less than 51�.

� the number of intervals chosen is often a �ne judgement: not
too many, but not too small. Depending on the data 5 to 10 is
often su¢ cient, but in the end you should choose the number of
intervals to give you informative picture about the distribution
of the data. Below I have chosen 6 intervals with the �rst being
[40; 50) where 40 is called the lower class limit and 50 is the upper
class limit. The class width (of any interval) is the di¤erence
between the upper class limit and the lower class limit. For the
�rst interval this is 50� 40 = 10:

� record the frequency in each interval; i.e., record the number of
observations which fall in each of the constructed intervals

� For each frequency, calculate the relative frequency (rel. freq.) which
is �frequency divided by total number of observations�.

� For each relative frequency construct a number called the density (of
the interval) which is obtained as �relative frequency divided by class
width�.

Such manipulations give rise to the following grouped frequency table:
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waiting time class width mid-point frequency rel. freq. density
[a; b) (b� a) (a+ b)=2

[40; 50) 10 45 13 0:15 0:015
[50; 55) 5 52:5 12 0:14 0:028
[55; 60) 5 57:5 27 0:31 0:062
[60; 65) 5 62:5 22 0:25 0:050
[65; 70) 5 67:5 10 0:115 0:023
[70; 75) 5 72:5 3 0:035 0:007

Notice that the entries under rel. freq. sum to 1; as they should (why?).
Using these ideas we construct a histogram, which conveys the impression of
�how thick on the ground�observations are. Again, the graph is constructed
from bars, but in such a way as to exemplify the underlying continuous
nature of the data:

� construct bars over the intervals

� the bars must be connected - no spaces - this re�ects the fact that
the data are continuous (unless you think they are informative, avoid
constructing intervals contain no observations)

� the area of each bar must be equal to the relative frequency of
that interval

The height of each bar, so constructed, is called the density = relative frequency
class width ,

which gives rise to the last column in the grouped frequency table.
The resulting histogram looks like Figure 2.2 and you should be able

to verify how it is constructed from the information given in the grouped
frequency table.
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Figure 1.2: Waiting time of credit card customers
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1.2.3 Two variables: Scatter diagrams/plots

The graphical summaries, introduced above, are for summarising just one
variable. An interesting question is whether two (or more) characteristics
of each member of a sample are inter-related. For example, one may be
interested in whether an individual�s weight (variable Y ) is related to height
(variable X).

Scatter of Weight against Height
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Figure 1.3: Weight (Y ) against Height (X)

Consider a sample of n = 12; �rst year undergraduates, where for each
individual (denoted i) we record the following information for individual i:

� yi = observed weight measured in pounds (lbs); and xi = observed
height measured in inches.

These data naturally give a sequence of 12 co-ordinates, fxi; yig ; i =
1; : : : ; 12; which can be plotted to give the scatter diagram in Figure 2.3.

This sort of diagram should not be viewed as way of detecting the precise
nature of the relationship between the two variables, X and Y; in general-
a lot of common sense is required as well. Rather, it merely illuminates the
simplest, most basic, relation of whether larger y values appear to be asso-
ciated with larger (or smaller) values of the x variable; thereby signifying an
underlying positive (respectively, inverse or negative) observed relationship
between the two. This may be suggestive about the general relationship
between height (X) and weight (Y ), but is by no means conclusive. Nor
does it inform us on general cause and e¤ect; such as do changes in teh
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variable X cause changes in variable Y; or the other way around. Therefore
care must be taken in interpreting such a diagram. However, in this case, if
there is cause and e¤ect present then it seems plausible that it will run from
X to Y; rather than the other way around; e.g., we might care to use height
as a predictor of weight.1 In general, if cause and e¤ect does run from the
X variable to the Y variable, the scatter plot should be constructed with
values of X; denoted x; on the horizontal axis and those for Y; denoted y;
on the vertical axis.

1.3 Numerical summaries

In the previous sections we looked at graphical summaries of data. We now
describe three numerical summaries. When these summaries are applied to
a set of data, they return a number which we can interpret. Indeed, the
numbers so computed provide summary information about the diagrams
that could have be constructed.

Shall look at three categories of numerical summaries:

� location or average

� dispersion, spread or variance

� association, correlation or regression

1.3.1 Location

A measure of location tells us something about where the centre of a set of
observations is. We sometimes use the expression central location, central
tendency or, more commonly, average. We can imagine it as the value around
which the observations in the sample are distributed. Thus, from Figure 2.1
we might say that the number of pints consumed are distributed around 3;
or that the location of the distribution of waiting times, from Figure 2.2,
appears to be between 55 and 60 seconds.

The simplest numerical summary (descriptive statistic) of location is the
sample (arithmetic) mean:

�x =
1

n

nX
i=1

xi =
(x1 + x2 + : : :+ xn)

n
:

It is obtained by adding up all the values in the sample and dividing this
total by the sample size. It uses all the observed values in the sample and
is the most popular measure of location since it is particularly easy to deal

1When analysing the remains of human skeletons, the length of the femur bone is often
used to predict height, and from this weight of the subject when alive.



1.3. NUMERICAL SUMMARIES 11

with theoretically. Another measure, with which you may be familiar, is
the sample median. This does not use all the values in the sample and is
obtained by �nding the middle value in the sample, once all the observations
have been ordered from the smallest value to the largest. Thus, 50% of the
observations are larger than the median and 50% are smaller. Since it does
not use all the data it is less in�uenced by extreme values (or outliers), unlike
the sample mean. For example, when investigating income distributions it
is found that the mean income is higher than the median income; this is
so because the highest 10% of the earners in the country will not a¤ect the
median, but since such individuals may earn extremely high amounts they
will raise the overall mean income level.

In some situations, it makes more sense to use a weighted sample mean,
rather than the arithmetic mean:

� weighted mean:
Pn
i=1wixi = w1x1 + w2x2 + : : : + wnxn, where the

weights (w1; : : : ; wn) satisfy
Pn
i=1wi = 1:

Weighted means are often used in the construction of index numbers.
(An example of where it might be a useful calculation is given in Exercise
1.) Note that equal weights of wi = n�1, for all i; gives the arithmetic mean.

All the above measures of location can be referred to as an average. One
must, therefore, be clear about what is being calculated. Two politicians
may quote two di¤erent values for the �average income in the U.K.�; both
are probably right, but are computing two di¤erent measures!

1.3.2 Dispersion

A measure of dispersion (or variability) tells us something about how much
the values in a sample di¤er from one another and, more speci�cally, how
closely these values are distributed around the central location.

We begin by de�ning a deviation from the arithmetic mean (note the
use of the lower case letter for a deviation):

� deviation: di = xi � �x

As an average measure of deviation from �x; we could consider the arith-
metic mean of deviations, but this will always be zero (and is demonstrated
in a worked exercise). A more informative alternative is the Mean Absolute
Deviation (MAD):

� MAD: 1n
Pn
i=1 jdij = 1

n

Pn
i=1 jxi � �xj > 0;

or the Mean Squared Deviation (MSD):

� MSD: 1n
Pn
i=1 d

2
i =

1
n

Pn
i=1(xi � �x)2 > 0:
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Like the arithmetic mean, the MSD is easier to work with and lends
itself to theoretical treatment. The MSD is sometimes called the sample
variance; this will not be so in this course. It is far more convenient to
de�ne the sample variance as follows (sometimes referred to as the �n� 1�
method)

� Sample Variance (the n�1 method): s2 = 1

n� 1
Pn
i=1 d

2
i =

1
n�1

Pn
i=1(xi�

�x)2 > 0

The square root of this is:

� Standard Deviation: s = +
p
s2 > 0.

If we have a set of observations, y1; :::; yn, from which we calculate the
variance, we might denote it as s2y to distinguish it from a variance calculated
from the values x1; :::; xn; which we might denotes as s2x:

Table 2.1, using the sample of data on heights and weights of sample of
12 �rst year students, illustrates the mechanical calculations. These can be
automated in EXCEL.:

� Example

Let Y = Weight (lbs); X = Height (ins), with observations obtained as
(yi; xi); i = 1; :::; 12:

i yi xi yi � �y xi � �x (yi � �y)2 (xi � �x)2 (yi � �y)� (xi � �x)
1 155 70 0:833 3:167 0:694 10:028 22:639
2 150 63 �4:167 �3:833 17:361 14:694 15:972
3 180 72 25:833 5:167 667:361 26:694 133:472
4 135 60 �19:167 �6:833 367:361 46:694 130:972
5 156 66 1:833 �0:833 3:361 0:694 �1:528
6 168 70 13:833 3:167 191:361 10:028 43:806
7 178 74 23:833 7:167 568:028 51:361 170:806
8 160 65 5:833 �1:833 34:028 3:361 �10:694
9 132 62 �22:167 �4:833 491:361 23:361 107:139
10 145 67 �9:167 0:167 84:028 0:028 �1:528
11 139 65 �15:167 �1:833 230:028 3:361 27:806
12 152 68 �2:167 1:167 4:694 1:361 �2:528P

1850 802 0 0 2659:667 191:667 616:333
Table 2.1

Arithmetic means are: �y = 1850=12 = 154:167, i.e., just over 154 lbs;
�x = 802=12 = 66:833; i.e., just under 67 inches.
Standard deviations are: for observations on the variable Y; sy = +

p
2659:667=11 =

21:898; i.e. just under 22 lbs; and for variable X; sx = +
p
191:667=11 =

4:174; i.e., just over 4 lbs.
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1.3.3 Correlation and Regression

A commonly used measure of association is the sample correlation coe¢ -
cient, which is designed to tell us something about the characteristics of a
scatter plot of observations on the variable Y against observations on the
variable X: In particularly, are higher than average values of y associated
with higher than average values of x; and vice-versa? Consider again the
scatter plot of weight against height. Now superimpose on this graph the
horizontal line of y = 154 (i.e., y �= �y) and also the vertical line of x = 67
(i.e., x �= �x); see Figure 2.4.

Scatter of Weight against Height
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Figure 2.4: Scatter Diagram with Quadrants

Points in the obtained upper right quadrant are those for which weight
is higher than average and height is higher than average; points in the
lower left quadrant are those for which weight is lower than average and
height is lower than average. Since most points lie in these two quadrants,
this suggests that higher than average weight is associated with higher than
average height; whilst lower than average weight is associated with lower
than average height; i.e., as noted before, a positive relationship between
the observed x and y: If there were no association, we would expect to a
roughly equal distribution of points in all four quadrants. On the basis of
this discussion, we seek a number which captures this sort of relationship.
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Figure 2.5: Scatter of mean deviations

Such a number is based, again, on the calculation and analysis of the
respective deviations: (xi � �x) and (yi � �y) ; i = 1; : : : ; 12; and to help
we plot these mean deviations in Figure 2.5. Consider the pairwise prod-
ucts of these deviations, (xi � �x) � (yi � �y) ; i = 1; : : : ; 12: If observations
all fell in either the top right or bottom left quadrants (a positive rela-
tionship), then (xi � �x) � (yi � �y) would be positive for all i: If all the
observations fell in either the top left or bottom right quadrants (a neg-
ative relationship), then (xi � �x) � (yi � �y) would be negative for all i:
Allowing for some discrepancies, a positive relationship should result in
(xi � �x) � (yi � �y) being positive on average; whilst a negative relation-
ship would imply that (xi � �x) � (yi � �y) should be negative on average.
This suggests that a measure of association, or correlation, can be based
upon 1

n

Pn
i=1 (xi � �x) (yi � �y) ; the average product of deviations; note fol-

lowing standard mathematical notation the product (xi � �x) � (yi � �y) is
simply written as (xi � �x) (yi � �y) : The disadvantage of this is that it�s size
depends upon the units of measurement for y and x: For example, the value
of 1n

Pn
i=1 (xi � �x) (yi � �y) would change if height was measured in centime-

tres, but results only in a re-scaling of the horizontal axis on the scatter plot
and should not, therefore, change the extent to which we think height and
weight are correlated.

Fortunately, it is easy to construct an index which is independent of the
scale of measurement for both y and x; and this is:
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� the sample correlation coe¢ cient:

r =

Pn
i=1 (xi � �x) (yi � �y)qPn

i=1 (xi � �x)
2 Pn

i=1 (yi � �y)
2
; �1 � r � 1:

� the constraint that �1 < r < 1; can be shown to be true algebraically
for any given set of data fxi; yig ; i = 1; : : : ; n.

For the above example, of weights and heights:

r = 616:333=
p
(2659:667)� (191:667) = 0:863:

The following limitations of the correlation coe¢ cient should be observed.

1. In general, this sort of analysis does not imply causation, in either
direction. Variables may appear to move together for a number of rea-
sons and not because one is causally linked to the other. For example,
over the period 1945� 64 the number of TV licences (x) taken out in
the UK increased steadily, as did the number of convictions for juvenile
delinquency (y) : Thus a scatter of y against x; and the construction
of the sample correlation coe¢ cient reveals an apparent positive rela-
tionship. However, to therefore claim that increased exposure to TV
causes juvenile delinquency would be extremely irresponsible.

2. The sample correlation coe¢ cient gives an index of the apparent lin-
ear relationship only. It �thinks� that the scatter of points must be
distributed about some underlying straight line (with non-zero slope
when r 6= 0). This is discussed further below, and in Exercise 1.

Let us now turn our attention again to Figures 2.3. and 2.4. Imagine
drawing a straight line of best �t through the scatter of points in Figure 2.3,
simply from �visual�inspection. You would try and make it �go through�the
scatter, in some way, and it would probably have a positive slope. For the
present purposes, draw a straight line on Figure 2.3 which passes through the
two co-ordinates of (60; 125) and (75; 155). Numerically, one of the things
that the correlation coe¢ cient does is assess the slope of such a line: if r > 0;
then the slope should be positive, and vice-versa. Moreover, if r is close to
either 1 (or �1) then this implies that the scatter is quite closely distributed
around the line of best �t. What the correlation coe¢ cient doesn�t do,
however, is tell us the exact position of line of best �t. This is achieved
using regression.

The line you have drawn on the scatter can be written as z = 2x + 5;
where z; like y; is measured on the vertical axis; notice that I use z rather
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than y to distinguish it from the actual values of y: Now for each value xi;
we can construct a zi; i = 1; : : : ; 12: Notice the di¤erence between the zi and
the yi; which is illustrated in Figure 2.6a for the case of x2 = 63 (the second
observation on height), where the actual weight is y2 = 150: The di¤erence,
in this case, is y2 � z2 = 150 � 131 = 19: Correspondingly, di¤erences
also referred to as deviations or residuals, calculated for all values of xi are
depicted in Figure 2.6b. Note that the di¤erence (deviation or residual) for
x8 = 65 is di¤erent from that for x11 = 65; because the corresponding values
of y are di¤erent. The line z = 2x + 5 is just one of a number of possible
lines that we could have drawn through the scatter. But does it provide the
�best �t�? We would like the line of best �t to generate values of z which are
close (in some sense) to the corresponding actual values of y; for all given
values of x: To explore this further, consider another line: z = 4x � 110:
This is illustrated in Figure 2.6c, where a deviation (or residual) is depicted
for x2 = 63; this deviation (or residual) di¤ers from the corresponding one
for the line z = 2x + 5: But which of these two lines is better? Intuitively,
z = 4x � 110 looks better, but can we do better still? Formally, yes, and
the idea behind �line of best �t� is that we would like the sum of squared
deviations (or sum of squared residuals) between the zi and the actual yi to
be as low as possible. For the line, z = 2x+ 5; the deviation from the value
y at any data value is yi � zi (which is equal to yi � 2xi � 5) and the sum
of the squared deviations (sum of squared residuals) is:

12X
i=1

(yi � zi)2 =
12X
i=1

(yi � 2xi � 5)2 =

= (155� 135)2 + (150� 121)2 + : : :+ (152� 131)2

= 3844:
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(a) Calculation of a deviation for x2 = 63
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(c) Calculation of a deviation for x2 = 63
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(b) Deviations for each xi
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(d) Deviations for each xi

Figure 2.6: Alternative lines and deviations

Now consider the other possibility: z = 4x � 110: Based on the same
calculation, the sum of squared deviations (sum of squared residuals) be-
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tween these ziand the actual yi is lower, being only 916;so, the second line
is better. The question remains, though, as to what line would be �best�;
i.e., is there yet another line (a + bx; for some numbers a and b) for which
the implied sum of squared deviations is smallest? The answer is �yes there
is�and the construction of such a line is now described.

The best line, a + bx;chooses the intercept a and slope bsuch that the
implied average squared deviation between fa+ bxigand fyig is minimised.
Properties of the line of best �t problem are summarised as:

� Line of best �t, or regression equation, has the form: ŷ = a+ bx:

� The intercept, a, and slope, b, are obtained by regressing y on x.

� This minimises the average squared deviation between ŷi and yi, and
constrains the line to pass through the point (�x; �y) :

The technique of obtaining a and b in this way is also known as ordi-
nary least squares, since it minimises the sum of squared deviations (sum of
sqaured residuals) from the �tted line.

We shall not dwell on the algebra here, but the solutions to the problem
are:

b =

Pn
i=1(xi � �x)(yi � �y)Pn

i=1(xi � �x)2
; a = �y � b�x;

see Additional Worked Exercises on the course website.
Applying the technique to the weight and height data yields: b = 616:333=191:667 =

3:2157, and a = 154:167 � 3:2157 � 66:833 = �60:746; giving smallest sum
of squares deviations as 677:753: This line is superimposed on the scatter in
Figure 2.7.

Regression of Weight against Height
y = 3.2157x ­ 60.746
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Figure 2.7: Scatter Plot with Regression Line

1.3.4 Interpretation of regression equation

Note that b is the slope of the �tted line, ŷ = a + bx; i.e., the derivative of
ŷ with respect to x :

� b = dŷ=dx = dy=dx+ error
and measures the increase in y for a unit increase in x:

Alternatively, it can be used to impute an elasticity. Elementary eco-
nomics tells us that if y is some function of x; y = f(x); then the elasticity
of y with respect to x is given by the logarithmic derivative:

� elasticity : d log (y)
d log (x)

=
dy=y

dx=x
�= (x=y)b

where we have used the fact that the di¤erential d log(y) =
1

y
dy: Such

an elasticity is often evaluated at the respective sample means; i.e., it
is calculated as (�x=�y)b:

� Example: In applied economics studies of demand, the log of demand
(Q) is regressed on the log of price (P ); in order to obtain the �tted
equation (or relationship). For example, suppose an economic model
for the quantity demanded of a good, Q; as a function of its price,
P; is postulated as approximately being Q = aP b where a and b are
unknown �parameters�, with a > 0; b < 1 to ensure a positive down-
ward sloping demand curve. Taking logs on both sides we see that
log(Q) = a� + b log(P ); where a� = log(a): Thus, if n observations
are available, (qi; pi), i = 1; :::; n; a scatter plot of log(qi) on log(pi)
should be approximately linear in nature. Thus suggests that a simple
regression of log(qi) on log(pi) would provide a direct estimate of the
elasticity of demand which is given by the value b:

1.3.5 Transformations of data

Numerically, transformations of data can a¤ect the above summary mea-
sures. For example, in the weight-height scenario, consider for yourself what
would happen to the values of a and b and the correlation if we were to use
kilograms and centimetres rather than pounds and inches.

A more important matter arises if we �nd that a scatter of the some
variable y against another, x; does not appear to reveal a linear relationship.
In such cases, linearity may be retrieved if y is plotted against some function
of x (e.g., log(x) or x2; say). Indeed, there may be cases when Y also needs to
be transformed in some way. That is to say, transformations of the data (via
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some mathematical function) may render a non-linear relationship �more�
linear.

1.4 Exercise 1

1. Within an area of 4 square miles, in a city centre, there are 10 petrol
stations. The following table gives the price charged at each petrol
station (pre-Budget in pence per litre) for unleaded petrol, and the
market share obtained:
Petrol Station 1 2 3 4 5 6 7 8 9 10

Price 96:0 96:7 97:5 98:0 97:5 98:5 95:5 96:0 97:0 97:3

Market Share 0:17 0:12 0:05 0:02 0:05 0:01 0:2 0:23 0:1 0:05

(a) Calculate the sample (or arithmetic) mean and standard devia-
tion (using the n� 1 method) of the price.

(b) Calculate the weighted mean, using the market share values as
the set of weights. Explain why the weighted and unweighted
means di¤er.

(c) Calculate the (sample) mean and standard deviation of the price
per gallon.

2. Consider, again, the data on X = petrol prices and Y = market share
given in the previous question. You must �nd the answers to the
following questions �by hand�so that you understand the calculations
involved; however, you should also check you answers using EXCEL
and be prepared to hand in a copy of the EXCEL worksheet containing
the appropriate calculations.

(a) Show that the correlation coe¢ cient between these two variables
is �0:9552. Interpret this number and, in particular,is the sign
as you would expect?

(b) Use the data to �t the regression line, ŷ = a+ bx; i.e., show that
regressing y on x yields a value of a = 6:09 and b = �0:0778:
Why would you expect the value of b to be negative given (a)?

(c) Suppose, post-budget, the every price rises uniformly by 2 pence.
Assuming that the market shares stay the same, write down what
a regression of market share on prices would now yield for values
of a and b:

3. You should use EXCEL to answer the following and be prepared to
hand in a copy of the EXCEL worksheet containing the appropriate
calculations.
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Refer to the data given below in which you are given 11 observations
on a variable labelled X and 11 observations on each of three variables
Y; Z and W:

observation x y z w

1 10 8.04 9.14 7.46
2 8 6.95 8.14 6.77
3 13 7.58 8.74 12.74
4 9 8.81 8.77 7.11
5 11 8.33 9.26 7.81
6 14 9.96 8.10 8.84
7 6 7.24 6.13 6.08
8 4 4.16 3.10 5.39
9 12 10.84 9.13 8.15
10 7 4.82 7.26 6.42
11 5 5.68 4.74 5.73

(a) Use EXCEL to obtain three separate scatter diagrams of y against
x; z against x and w against x:

(b) Show that the sample correlation coe¢ cient between y and x is
0:82 and that this is the same as the corresponding correlation
between z and x and also w and x:

(c) Using EXCEL, show that the three separate regressions of y on
x; z on x and w on x all yield a �line of best �t�or regression
equation of the form: 3 + 0:5x; i.e., a line with intercept 3 and
slope 0:5: Use EXCEL to superimpose this regression line on each
of the three scatter diagrams obtained in part (a).

(d) To what extent do you feel that correlation and regression analy-
sis is useful for the various pairs of variables?

4. Go to the module website (Exercises) and download the EXCEL spread-
sheet, tute1.xls. This contains data on carbon monoxide emissions
(CO) and gross domestic product (GDP) for 15 European Union coun-
tries for the year 1997.

(a) Using EXCEL, construct a scatter plot of carbon monoxide emis-
sions against gross domestic product, construct the regression line
(of CO on GDP) and calculate the correlation coe¢ cient.

(b) Repeat the exercise, but this time using the natural logarithm of
CO, ln(CO), and ln(GDP).

(c) What do you think this tells us about the relationship between
the two variables?
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1.4.1 Exercises in EXCEL

It is assumed that you know how to use EXCEL to perform the simple statis-
tical calculations, as described in Sections 1 and 2 of these notes. Calculate
sample means and standard deviations of the weight and height variables
(Table 2.1). Also calculate the correlation between the two variables and
obtain a scatter plot with regression line added (as in Figure 2.7).



Chapter 2

INTRODUCING
PROBABILITY

So far we have been looking at ways of summarising samples of data drawn
from an underlying population of interest. Although at times tedious, all
such arithmetic calculations are fairly mechanical and straightforward to
apply. To remind ourselves, one of the primary reasons for wishing to sum-
marise data is so assist in the development of inferences about the population
from which the data were taken. That is to say, we would like to elicit some
information about the mechanism which generated the observed data.

We now start on the process of developing mathematical ways of for-
mulating inferences and this requires the use of probability. This becomes
clear if we think back to one of the early questions posed in this course:
prior to sampling is it possible to predict with absolute certainty what will
be observed? The answer to this question is no; although it would be of
interest to know how likely it is that certain values would be observed. Or,
what is the probability of observing certain values?

Before proceeding, we need some more tools:

2.1 Venn diagrams

Venn diagrams (and diagrams in general) are of enormous help in trying to
understand, and manipulate probability. We begin with some basic de�ni-
tions, some of which we have encountered before.

� Experiment: any process which, when applied, provides data or an
outcome; e.g., rolling a die and observing the number of dots on the
upturned face; recording the amount of rainfall in Manchester over a
period of time.

� Sample Space: set of possible outcomes of an experiment; e.g., S
(or 
) = f1; 2; 3; 4; 5; 6g or S = fx;x � 0g; which means �the set of

23
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real non-negative real numbers�.

� Event: a subset of S, denoted E � S; e.g., E = f2; 4; 6g or E =
fx; 4 < x � 10g ; which means �the set of real numbers which are strictly
bigger than 4 but less than or equal to 10�.

� Simple Event: just one of the possible outcomes on S

� note that an event, E, is a collection of simple events.

Such concepts can be represented by means of a Venn Diagram, as in
Figure 3.1.

Figure 2.1: A Venn Diagram

The sample space, S; is depicted as a closed rectangle, and the event E
is a closed loop wholly contained within S and we write (in set notation)
E � S:

In dealing with probability, and in particular the probability of an event
(or events) occurring, we shall need to be familiar with UNIONS, IN-
TERSECTIONS and COMPLEMENTS.

To illustrate these concepts, consider the sample space S = fx;x �
0g;with the following events de�ned on S; as depicted in Figure 3.2:

E = fx; 4 < x � 10g; F = fx; 7 < x � 17g; G = fx;x > 15g; H =
fx; 9 < x � 13g:
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(a) Event E: A closed loop (b) Union: E [ F

(c) Intersection: E \ F (d) The Null set/event: E \G = ;

(e) Complement of E: �E (f) Subset of F : H � F and H \ F = H

Figure 3.2: Intersections, unions, complements and subsets

� The union of E and F is denoted E[F; with E[F = fx; 4 < x � 17g;
i.e., it contains elements (simple events) which are either in E or in F
or (perhaps) in both. This is illustrated on the Venn diagram by the
dark shaded area in diagram (b).

� The intersection of E and F is denoted E\F; with E\F = fx; 7 � x � 10g ;
i.e., it contains elements (simple events) which are common to both E
and F: Again this is depicted by the dark shaded area in (c). If events
have no elements in common (as, for example, E and G) then they are
said to be mutually exclusive, and we can write E \ G = ;; meaning
the null set which contains no elements. Such a situation is illustrated
on the Venn Diagram by events (the two shaded closed loops in (d))
which do not overlap. Notice however that G \ F 6= ;; since G and F
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have elements in common.

� The complement of an event E; say, is everything de�ned on the sample
space which is not in E: This event is denoted �E; the dark shaded area
in (e); here �E = fx;x � 4g [ fx;x > 10g :

� Finally note that H is a sub-set of F ; see (f). It is depicted as the
dark closed loop wholly contained within F; the lighter shaded area, so
that H \ F = H; if an element in the sample space is a member of H
then it must also be member of F: (In mathematical logic, we employ
this scenario to indicate that �H implies F�, but not necessarily vice-
versa.) Notice that G \H = ; but H \ E 6= ;:

2.2 Probability

The term probability (or some equivalent) is used in everyday conversation
and so can not be unfamiliar to the reader. We talk of the probability,
or chance, of rain; the likelihood of England winning the World Cup; or,
perhaps more scienti�cally, the chance of getting a 6 when rolling a die.
What we shall now do is develop a coherent theory of probability; a theory
which allows us to combine and manipulate probabilities in a consistent and
meaningful manner. We shall describe ways of dealing with, and describ-
ing, uncertainty. This will involve rules which govern our use of terms like
probability.

There have been a number of di¤erent approaches (interpretations) of
probability. Most depend, at least to some extent, on the notion of relative
frequency as now described:

� Suppose an experiment has an outcome of interest E. The relative fre-
quency interpretation of probability says that assuming the experiment
can be repeated a large number of times then the relative frequency of
observing the outcome E will settle down to a number, denoted Pr(E);
P (E) or Prob(E); called the probability of E.

This is illustrated in Figure 3:3; where the proportion of heads obtained
after n �ips of a fair coin is plotted against n; as n increases; e.g., of the �rst
100 �ips, 55 were heads (55%). Notice that the plot becomes less �wobbly�
after about n = 220 and appears to be settling down to the value of 12 :

Due to this interpretation of probability, we often use observed sample
proportions to approximate underlying probabilities of interest; see, for ex-
ample, Question 4 of Exercise 2. There are, of course, other interpretations
of probability; e.g., the subjective interpretation which simply expresses the
strength of one�s belief about an event of interest such as whether Manchester
United will win the European Cup! Any one of these interpretations can



2.2. PROBABILITY 27

3002001000

1.0

0.9

0.8

0.7
0.6

0.5

0.4

number of flips, n

pro
po

rtio
no

fH
EA

DS

RELATIVE FREQUENCY OF GETTING A HEAD
IN n FLIPS OF A FAIR COIN

Figure 2.3: Relative frequency interpretation of probability

be used in practical situations provided the implied notion of probability
follows a simple set of axioms or rules.

2.2.1 The axioms of probability

There are just three basic rules that must be obeyed when dealing with
probabilities:

1. For any event E de�ned on S; i.e., E � S; Pr(E) � 0; probabilities are
non-negative.

2. Pr(S) = 1; having de�ned the sample space of outcomes, one of these
outcomes must be observed.

3. If events E and F are mutually exclusive de�ned on S, so that E \
F = ;, then Pr (E [ F ) = Pr (E) + Pr (F ) : In general, for any set of
mutually exclusive events, E1; E2; : : : ; Ek; de�ned on S :

Pr(E1 [ E2 [ : : : [ Ek) = Pr(E1) + Pr(E2) + : : :Pr(Ek)

i.e., Pr
�Sk

j=1Ej

�
=
Pk
j=1 Pr(Ej):

In terms of the Venn Diagram, one can (and should) usefully think of
the area of E; relative to that of S; as providing an indication of probability.
(Note, from axiom 2, that the area of S is implicitly normalised to be unity).

Also observe that, contrary to what you may have believed, it is not one
of the rules that Pr(E) � 1 for any event E: Rather, this is an implication
of the 3 rules given:

� implications: it must be that for any event E; de�ned on S; E\ �E = ;
and E[ �E = S: By Axiom 1; Pr(E) � 0 and Pr

�
�E
�
� 0 and by Axiom

3 Pr(E) + Pr( �E) = Pr(S): So Pr (E) + Pr
�
�E
�
= 1; by Axiom 2: This

implies that
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1. (a) 0 � Pr(E) � 1

(b) Pr( �E) = 1� Pr(E)

The �rst of these is what we might have expected from probability (a
number lying between 0 and 1). The second implication is also very im-
portant; it says that the probability of E not happening is �one minus the
probability of it happening�. Thus when rolling a die, the probability of
getting 6 is one minus the probability of getting either a 1; 2; 3; 4 or 5:

These axioms imply how to calculate probabilities on a sample space
of equally likely outcomes. For example, and as we have already noted,
the experiment of rolling a fair die de�nes a sample space of six, mutually
exclusive and equally likely outcomes (1 to 6 dots on the up-turned face).
The axioms then say that each of the six probabilities are positive, add to
1 and are all the same. Thus, the probability of any one of the outcomes
must be simply 1

6 ; which may accord with your intuition. A similar sort
of analysis reveals that the probability of drawing a club from a deck of 52
cards is 1352 ; since any one of the 52 cards has an equal chance of being drawn
and 13 of them are clubs; i.e., 13 of the 52 are clubs, so the probability of
drawing a club is 13

52 : Notice the importance of the assumption of equally
likely outcomes here.

In this, and the next section of notes, we shall see how these axioms can
be used. Firstly, consider the construction of a probability for the union of
two events; i.e., the probability that either E or F or (perhaps) both will
occur. Such a probability is embodied in the addition rule of probability :

2.2.2 The addition rule of probability

When rolling a fair die, let E denote the event of an �odd number of dots�
and F the event of the �number of dots being greater than, or equal, to
4�: What is the probability of the event E [ F? To calculate this we can
collect together all the mutually exclusive (simple) events which comprise
E [F; and then add up the probabilities (by axiom 3). These simple events
are 1; 3; 4; 5 or 6 dots. Each has a probability of 16 ; so the required total
probability is: Pr (E [ F ) = 5

6 : Consider carefully how this probability is
constructed and note, in particular, that Pr (E [ F ) 6= Pr (E)+Pr (F ) since
E and F have a simple event in common (namely 5 dots).

In general, we can calculate the probability of the union of events using
the addition rule of probability, as follows.

� For any events, E � S and F � S : Pr(E [ F ) = Pr(E) + Pr(F ) �
Pr(E \ F ):

So, in general, Pr (E [ F ) � Pr(E) + Pr(F ):
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This generalises to three events, E1; E2 and E3 as

Pr(E1 [ E2 [ E3) = Pr(E1) + Pr(E2) + Pr(E3)

�Pr(E1 \ E2)� Pr(E1 \ E3)� Pr(E2 \ E3)
+Pr(E1 \ E2 \ E3):

We can demonstrate this as follows.
Note that

E [ F =
�
E \ �F

�
[ (E \ F ) [

�
�E \ F

�
the union of 3 mutually exclusive events. These mutually exclusive events
are depicted by the shaded areas a; b and c; respectively, in Figure 3:4:

Figure 2.4: Decomposing E [ F

Then by Axiom 3; and from the fact that the three events
�
E \ �F

�
,

(E \ F ) and
�
�E \ F

�
are mutually exclusive so that the �area�occupied by

E [ F is simply a+ b+ c;

Pr (E [ F ) = Pr
�
E \ �F

�
+ Pr

�
�E \ F

�
+ Pr (E \ F ) :

But also by Axiom 3, since E =
�
E \ �F

�
[(E \ F ), it must be that Pr(E) =

Pr
�
E \ �F

�
+Pr(E\F ); similarly, Pr

�
�E \ F

�
= Pr (F )�Pr (E \ F ) : Putting

all of this together gives

Pr(E [ F ) = Pr(E) + Pr(F )� Pr(E \ F ):

When E and F are mutually exclusive, so that E \ F = ;; this rule
reveals Axiom 2: Pr(E [ F ) = Pr(E) + Pr(F ):

� Example: What is the probability of drawing a Queen (Q) or a Club
(C) in a single draw from a pack of cards? Now, 4 out of 52 cards
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are Queens, so Pr (Q) = 4
52 ; whilst Pr (C) =

13
52 : The probability of

drawing the Queen of Clubs is simply 1
52 ; i.e., Pr (Q \ C) =

1
52 : What

we require is a Club or a Queen, for which the probability is

Pr (Q [ C) = Pr (Q) + Pr (C)� Pr (Q \ C)

=
4

52
+
13

52
� 1

52

=
16

52
=
4

13
:

� Example: Consider a car journey from Manchester to London via the
M6 and M1. Let E = heavy tra¢ c somewhere on route and F =
roadworks somewhere on route. It is estimated that Pr(E) = 0:8
and Pr(F ) = 0:4; whilst the probability of NOT encountering both
is Pr(E \ F ) = 0:6: What is the probability of encountering heavy
tra¢ c or roadworks?

We require Pr (E [ F ) :

Pr(E [ F ) = Pr(E) + Pr(F )� Pr(E \ F )
= Pr(E) + Pr(F )� (1� Pr(E \ F ))
= 0:8 + 0:4� 1 + 0:6
= 0:8 = Pr(E)

Notice that this implies, in this case, that F � E (why?). This model
then implies that when there are roadworks somewhere on route you
are bound to encounter heavy tra¢ c; on the other hand, you can
encounter heavy tra¢ c on route without ever passing through road-
works. (My own experience of this motorway inclines me towards this
implication!)

Similar concepts apply when manipulating proportions as follows:

� Example: A sample of 1000 undergraduates were asked whether they
took either Mathematics, Physics or Chemistry at A-level. The fol-
lowing responses were obtained: 100 just took Mathematics; 70 just
took Physics; 100 just took Chemistry; 150 took Mathematics and
Physics, but not Chemistry; 40 took Mathematics and Chemistry, but
not Physics; and, 240 took Physics and Chemistry, but not Mathe-
matics. What proportion took all three?

This can be addressed with the following diagram:

The shaded area contains the number who took all three, which can
be deduced from the above information (since the total of the numbers
assigned to each part of the Venn diagram must be 1000). The answer
is therefore 30% (being 300 out of 1000).
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Figure 2.5: Venn Diagram for A-levels

� Two further results on unions, intersections and complements which
are of use (and which are fairly easy to demonstrate using Venn dia-
grams) are de Morgan Laws:

�
�
�A \ �B

�
=
�
A [B

�
� �A [ �B =

�
A \B

�
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Chapter 3

CONDITIONAL
PROBABILITY

An important consideration in the development of probability is that of
conditional probability. This refers to the calculation of updating probabili-
ties in the light of revealed information. For example, insurance companies
nearly always set their home contents insurance premiums on the basis of
the postcode in which the home is located. That is to say, insurance com-
panies believe the risk depends upon the location; i.e., the probability of
property crime is assessed conditional upon the location of the property.
(A similar calculation is made to set car insurance premiums.) As a result,
the premiums for two identical households located in di¤erent parts of the
country can di¤er substantially.

� In general, the probability of an event, E; occurring given that an
event, F; has occurred is called the conditional probability of E given
F and is denoted Pr(EjF ):

As another example, it has been well documented that the ability of a
new born baby to survive is closely associated with its birth-weight. A birth-
weight of less than 1500g is regarded as dangerously low. Consider E = birth
weight of a baby is less than 1500g, F = mother smoked during pregnancy ;
then evidence as to whether Pr(EjF ) > Pr(Ej �F ) is of considerable interest.

As a preliminary to the main development, consider the simple experi-
ment of rolling a fair die and observing the number of dots on the upturned
face. Then S = f1; 2; 3; 4; 5; 6g and de�ne events, E = f4g and F = f4; 5; 6g ;
we are interested in Pr (EjF ) : To work this out we take F as known. Given
this knowledge the sample space becomes restricted to simply f4; 5; 6g and,
given no other information, each of these 3 outcome remains equally likely.
So the required event, 4; is just one of three equally likely outcomes. It
therefore seems reasonable that Pr(EjF ) = 1

3 :

33
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We shall now develop this idea more fully, using Venn Diagrams with
the implied notion of area giving probability.

3.1 Conditional probability

Consider an abstract sample space, denoted by S; with events E � S; F �
S. This is illustrated in Figure 4.1, where the important areas used in the
construction of a conditional probability are highlighted as a and b :

Figure 3.1: Areas used in constructing a conditional probability

In general, it is useful to think of Pr(E) as area(E)area(S) ; and similarly for Pr(F )
and Pr(E\F ) where area(F ) = a+b and area(E\F ) = a:With this in mind,
consider what happens if we are now told that F has occurred. Incorporating
this information implies that the e¤ective sample space becomes restricted to
S� = F; since F now de�nes what can happen and covers area a+b: On this
new, restricted, sample space an outcome in E can only be observed if that
outcome also belongs to F; and this only occurs in area a which corresponds
to the event E \F: Thus the event of interest now is E� = E \F; as de�ned
on the restricted sample space of S� = F:

In order to proceed with the construction of the conditional probability,
Pr (EjF ) ; let area(S) = z: Then, since the ratio of the area of the event
of interest to that of the sample space gives probability, we have (on this
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restricted sample space)

Pr(EjF ) =
area (E \ F )
area (F )

=
a

a+ b

=
a=z

(a+ b) =z

=
Pr (E \ F )
Pr (F )

;

which gives the required result as now formally de�ned:

� The probability that E occurs, given that F is known to have occurred,
gives the conditional probability of E given F . This is denoted
Pr(EjF ) and is calculated as

Pr(EjF ) = Pr(E \ F )
Pr(F )

and from the axioms of probability will generate a number lying be-
tween 0 and 1; since Pr(F ) � Pr(E \ F ) � 0:

� Example: A Manufacturer of electrical components knows that the
probability is 0:8 that an order will be ready for shipment on time and
it is 0:6 that it will also be delivered on time. What is the probability
that such an order will be delivered on time given that it was ready
for shipment on time?

Let R = READY,D = DELIVERED ON TIME. Pr(R) = 0:8; P r(R\
D) = 0:6: From this we need to calculate Pr(DjR); using the above
formula. This gives, Pr(DjR) = Pr(R \D)=Pr(R) = 6=8; or 75%.

If we re-arrange the above formula for conditional probability, we obtain
the so-called multiplication rule of probability for intersections of events:

3.1.1 Multiplication rule of probability

The multiplication rule of probability can be stated as follows:

� Pr(E \ F ) = Pr(EjF )� Pr(F )

Note that for any two events, E and F; (E\F ) and (E\ �F ) are mutually
exclusive with E = (E \ F ) [ (E \ �F ); this has been seen before. So the
addition rule and multiplication rule of probability together give:

Pr(E) = Pr(E \ F ) + Pr(E \ �F )
= Pr(EjF )� Pr(F ) + Pr(Ej �F )� Pr( �F ):

This is an extremely important and useful result, in practice, as we shall see
shortly.



36 CHAPTER 3. CONDITIONAL PROBABILITY

3.1.2 Statistical Independence

If the knowledge that F has occurred does NOT alter our probability as-
sessment of E, then E and F are said to be (statistically) independent. In
this sense, F carries no information about E:

� Formally, E and F are independent events if and only if

Pr(EjF ) = Pr(E)

which, in turn is true if and only if

Pr(E \ F ) = Pr(E)� Pr(F ):

3.1.3 Bayes�Theorem

One area where conditional probability is extremely important is that of
clinical trials - testing the power of a diagnostic test to detect the presence
of a particular disease. Suppose, then, that a new test is being developed and
let P = �test positive�and D = �presence of disease�, but where the results
from applying the diagnostic test can never be wholly reliable. From the
point of view of our previous discussion on conditional probability, we would
of course require that Pr (P jD) to be large; i.e., the test should be e¤ective
at detecting the disease. However, if you think about, this is not necessarily
the probability that we might be interested in from a diagnosis point of
view. Rather, we should be more interested in Pr (DjP ) ; the probability of
correct diagnosis, and require this to be large (with, presumably, Pr(Dj �P )
being small). Here, what we are trying to attach a probability to is a possible
�cause�. The observed outcome is a positive test result (P ), but the presence
or non-presence of the disease is what is of interest and this is uncertain.
Pr(DjP ) asks the question �what is the probability that it is the presence
of the disease which caused the positive test result�? (Another recent news-
worthy example would be the e¤ect of exposure to depleted uranium on Gulf
and Balkan war veterans. Given the presence of lymph, lung or brain cancer
in such individuals (P ), how likely is that the cause was exposure to depleted
uranium weapons (D)? Firstly, is Pr (DjP ) high or low? Secondly, might
there being something else (F ) which could o¤er a �better� explanation,
such that Pr (F jP ) > Pr (DjF ) ?)

The situation is depicted in Figure 4.2, in which there are two possible
�states�in the population: D (depicted by the lighter shaded area covering
the left portion of the sample space) and �D: It must be that D [ �D = S;
since any individual in the population either has the disease or does not.
The event of an observed positive test result is denoted by the closed loop,
P: (Notice that the shading in the diagram is relatively darker where P
intersects with D:)
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Figure 3.2: Diagram for explaining Bayes�Theorem

To investigate how we might construct the required probability, Pr (DjP ) ;
proceed as follows:

Pr (DjP ) =
Pr (D \ P )
Pr(P )

=
Pr(D \ P )

Pr(P \D) + Pr(P \ �D)
;

since P = (P \ D) [ (P \ �D); and these are mutually exclusive. From
the multiplication rule of probability, Pr (P \D) = Pr(P jD) � Pr(D); and
similarly for Pr

�
P \ �D

�
: Thus

Pr (DjP ) = Pr (P jD)� Pr (D)
Pr (P jD)� Pr (D) + Pr(P j �D)� Pr

�
�D
� ;

which may be convenient to work with since Pr (P jD) and Pr
�
P j �D

�
can

be estimated from clinical trials and Pr (D) estimated from recent historical
survey data.

This sort of calculation (assigning probabilities to possible causes of ob-
served events) is an example of Bayes�Theorem. Of course, we may have to
consider more than two possible causes, and the construction of the appro-
priate probabilities is as follows.

1. Consider a sample space, S, where E � S and A;B;C are three
mutually exclusive events (possible causes), de�ned on S, such that
S = A [ B [ C. In such a situation, A;B and C are said to form a
partition of S. Bayes�Theorem states that:

Pr(AjE) = Pr(EjA)� Pr(A)
fPr(EjA)� Pr(A)g+ fPr(EjB)� Pr(B)g+ fPr(EjC)� Pr(C)g :
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2. And, more generally, consider a sample space, S, where E � S and
F1; F2; :::; Fk are k mutually exclusive events (possible causes), which
form a partition of S : S =

Sk
j=1 Fj . Bayes�Theorem then states

that:

Pr(Fj jE) =
Pr(EjFj)� Pr(Fj)Pk

s=1 fPr(EjFs)� Pr(Fs)g
:

From the above formula, you should be able to satisfy yourself thatPk
j=1 Pr (Fj jE) = 1: If this is not at �rst clear, consider case (1) and show

that Pr (AjE) + Pr (BjE) + Pr (CjE) = 1: The reason for this is that since
A; B and C form a partition of S; they must also form a partition of any
event E � S: In the above conditional probabilities, we are regarding E
as the restricted sample space and therefore the probabilities assigned the
mutually exclusive events (A;B;C) which cover this (restricted) sample
space, E; must sum to 1:

� Example: Box 1 contains 2 red balls. Box 2 contains 1 red and 1 white
ball. Box 1 and Box 2 are identical. If a box is selected at random and
one ball is withdrawn from it, what is the probability that the selected
box was number 1 if the ball withdrawn from it turns out to be red?

Let A be the event of selecting Box 1 and B the event of drawing a
red ball. Require Pr(AjB).

Pr(AjB) = Pr(A \B)=Pr(B);
Pr(A \B) = Pr(A)Pr(BjA) = (1=2)� 1 = 1=2:
And,

Pr(B) = Pr(A \B) + Pr( �A \B)
= Pr(A)� Pr(BjA) + Pr( �A)� Pr(Bj �A)
= (1=2) + (1=2)� (1=2)
= 3=4:

Therefore, Pr(AjB) = (1=2)=(3=4) = 2=3:

3.2 Exercise 2

1. A and B are events such that Pr(A) = 0:4 and Pr(A [B) = 0:75:

(a) Find Pr(B) if A and B are mutually exclusive.

(b) Find Pr(B) if A and B are independent.
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2. Events A; B and C are such that B and C are mutually exclusive and
Pr(A) = 2=3; Pr(A[B) = 5=6 and Pr(B[C) = 4=5: If Pr(BjA) = 1=2
and Pr(CjA) = 3=10; are A and C statistically independent?

3. Given the information in the example given in Section 3, about under-
graduates taking Mathematics, Physics or Chemistry A-levels, calcu-
late the following:

(a) Of those who took Mathematics, what proportion also took Physics
(but not Chemistry) and what proportion took both Physics and
Chemistry?

(b) Of those who took Physics and Chemistry, what proportion also
took Mathematics?

4. The Survey of British Births, undertaken in the 1970s, aimed to im-
prove the survival rate and care of British babies at, and soon after,
birth by collecting and analysing data on new-born babies. A sam-
ple was taken designed to be representative of the whole population
of British births and consisted of all babies born alive (or dead) after
the 24th week of gestation, between 0001 hours on Sunday 5 April and
2400 hours on Saturday 11 April 1970. The total number in the sample
so obtained was n = 17; 530: A large amount of information was ob-
tained, but one particular area of interest was the e¤ect of the smoking
habits of the mothers on newly born babies. In particular, the ability
of a newly born baby to survive is closely associated with its birth-
weight and a birth-weight of less than 1500g is considered dangerously
low. Some of the relevant data are summarised as follows.

For all new born babies in the sample, the proportion of mothers who:
(i) smoked before and during pregnancy was 0:433
(ii) gave up smoking prior to pregnancy was 0:170
(iii) who had never smoked was 0:397:

However, by breaking down the sample into mothers who smoked,
had given up, or who had never smoked, the following statistics were
obtained:
(iv) 1:6% of the mothers who smoked gave birth to babies whose weight
was less than 1500g,
(v) 0:9% of the mothers who had given up smoking prior to pregnancy
gave birth to babies whose weight was less than 1500g,
(vi) 0:8% of mothers who had never smoked gave birth to babies whose
weight was less than 1500g.

(a) Given this information, how would you estimate the risk, for a
smoking mother, of giving birth to a dangerously under-weight
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baby? What is the corresponding risk for a mother who has
never smoked? What is the overall risk of giving birth to an
under-weight baby?

(b) Of the babies born under 1500g; estimate the proportion of these
(a) born to mothers who smoked before and during pregnancy;
(b) born to mothers who had never smoked.

(c) On the basis of the above information, how would you assess the
evidence on smoking during pregnancy as a factor which could
result in babies being born under weight?

5. Metal fatigue in an aeroplane�s wing can be caused by any one of
three (relatively minor) defects, labelled A; B and C; occurring dur-
ing the manufacturing process. The probabilities are estimated as:
Pr(A) = 0:3; Pr(B) = 0:1; Pr(C) = 0:6: At the quality control stage
of production, a test has been developed which is used to detect the
presence of a defect. Let D be the event that the test detects a man-
ufacturing defect with the following probabilities: Pr(DjA) = 0:6;
Pr(DjB) = 0:2; Pr(DjC) = 0:7: If the test detects a defect, which of
A; B or C is the most likely cause? (Hint : you need to �nd, and
compare, Pr (AjD) ; Pr (BjD) and Pr (CjD) using Bayes Theorem.)
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RANDOM VARIABLES &
PROBABILITY
DISTRIBUTIONS I

The axioms of probability tell us how we should combine and use probabili-
ties in order to make sensible statements concerning uncertain events. To a
large extent this has assumed an initial allocation of probabilities to events
of interest, from which probabilities concerning related events (unions, inter-
sections and complements) can be computed. The question we shall begin
to address in the next two sections is how we might construct models which
assign probabilities in the �rst instance.

The ultimate goal is the development of tools which enable statistical
analysis of data. Any data under consideration (after, perhaps, some cod-
ing) are simply a set of numbers which describe the appropriate members of
a sample in meaningful way. Therefore, in wishing to assign to probabilities
to outcomes generated by sampling, we can equivalently think of how to as-
sign probabilities to the numbers that are explicitly generated by the same
sampling process. When dealing with numbers, a natural line of enquiry
would be to characterise possible mathematical functions which, when ap-
plied to appropriate numbers, yield probabilities satisfying the three basic
axioms. A mathematical function which acts in this fashion is termed a
mathematical or statistical model :

� mathematical/statistical models: mathematical functions which may
be useful in assigning probabilities in gainful way.

If such models are to have wide applicability, we need a �general� ap-
proach. As noted above, and previously, events (on a sample space of inter-
est) are often described in terms of physical phenomena; see Sections 3 and
4. Mathematical functions require numbers. We therefore need some sort
of mapping from the physical attributes of a sample space to real numbers,

41
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before we can begin developing such models. The situation is depicted in
Figure 5.1, in which events of interest de�ned on a physical sample space,
S; are mapped into numbers, x; on the real line. Note that there is only
one number for each physical event, but that two di¤erent events could be
assigned the same number. Thus, this mapping can be described by a func-
tion; it is this function, mapping from the sample space to the real line,
which de�nes a random variable. A further function, f(:); is then applied
on the real line in order to generate probabilities.

Sx

f(x)
Random Variable

tells us how to assign probabilities

Figure 4.1: Mapping from S to the real line

The initial task, then, is the mapping from S to the real line and this is
supplied by introducing the notion of a random variable:

4.1 Random Variable

For our purposes, we can think of a random variable as having two compo-
nents:

� a label/description which de�nes the variable of interest

� the de�nition of a procedure which assigns numerical values to events
on the appropriate sample space.

Note that:

� � often, but not always, how the numerical values are assigned will
be implicitly de�ned by the chosen label

�A random variable is neither RANDOM or VARIABLE! Rather,
it is device which describes how to assign numbers to physical
events of interest: �a random variable is a real valued function
de�ned on a sample space�.
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�A random variable is indicated by an upper case letter (X, Y , Z,
T etc). The strict mathematical implication is that since X is
a function, when it is applied on a sample space (of physical
attributes) it yields a number

The above is somewhat abstract, so let us now consider some examples
of random variables:

4.1.1 Examples of random variables

� Let X = �the number of HEADs obtained when a fair coin is �ipped
3 times�. This de�nition of X implies a function on the physical sam-
ple space which generates particular numerical values. Thus X is a
random variable and the values it can assume are:

X(H,H,H) = 3; X(T,H,H) = 2; X(H,T,H) = 2; X(H,H,T) = 2;
X(H,T,T) = 1; X(T,H,T) = 1; X(T,T,H) = 1; X(T,T,T) = 0:

� Let the random variable Y indicate whether or not a household has
su¤ered some sort of property crime in the last 12 months, with
Y (yes) = 1 and Y (no) = 0: Note that we could have chosen the
numerical values of 1 or 2 for yes and no respectively. However, the
mathematical treatment is simpli�ed if we adopt the binary responses
of 1 and 0:

� Let the random variable T describe the length of time, measured in
weeks, that an unemployed job-seeker waits before securing permanent
employment. So here, for example,

T (15 weeks unemployed) = 5; T (31 weeks unemployed) = 31; etc.

Once an experiment is carried out, and the random variable (X) is ap-
plied to the outcome, a number is observed, or realised ; i.e., the value of the
function at that point in the sample space. This is called a realisation, or
possible outcome, of X and is denoted by a lower case letter, x:

In the above examples, the possible realisations of the random variable
X (i.e., possible values of the function de�ned by X) are x = 0; 1; 2 or 3.
For Y; the possible realisations are y = 0; 1; and for T they are t = 1; 2; 3; :::
.

The examples of X; Y and T given here all applications of discrete ran-
dom variables (the outcomes, or values of the function, are all integers).
Technically speaking, the functions X; Y and T are not continuous.
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4.2 Discrete random variables

In general, a discrete random variable can only assume discrete realisations
which are easily listed prior to experimentation. Having de�ned a discrete
random variable, probabilities are assigned by means of a probability distri-
bution. A probability distribution is essentially a function which maps from
x (the real line) to the interval [0; 1] ; thereby generating probabilities.

In the case of discrete random variable, we shall use what is called a
probability mass function:

4.2.1 Probability mass function

The probability mass function (pmf) is de�ned for a DISCRETE random
variable, X; only and is the function:

p(x) = Pr(X = x); for all x:

Note that:

� We use p(x) here to emphasize that probabilities are being generated
for the outcome x; e.g., p(1) = Pr(X = 1); etc.

� Note that p(r) = 0; if the number r is NOT a possible realisation of X:
Thus, for the property crime random variable Y; with p(y) = Pr(Y =
y); it must be that p(0:5) = 0 since a realisation of 0:5 is impossible
for the random variable.

� If p(x) is to be useful, then it follows from the axioms of probability
that,

p(x) � 0 and
X
x

p(x) = 1

where the sum is taken over all possible values that X can assume.

For example, whenX = �the number of HEADs obtained when a fair coin
is �ipped 3 times�, we can write that

P3
j=0 p(j) = p(0)+p(1)+p(2)+p(3) = 1

since the number of heads possible is either 0; 1; 2; or 3: Be clear about the
notation being used here: p(j) is being used to give the probability that j
heads are obtained in 3 �ips; i.e., p(j) = Pr (X = j) ; for values of j equal
to 0; 1; 2; 3:

The pmf tells us how probabilities are distributed across all possible
outcomes of a discrete random variableX; it therefore generates a probability
distribution.
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4.2.2 A Bernoulli random variable

A Bernoulli random variable is a particularly simple (but very useful) dis-
crete random variable. The �property crime�random variable, Y; introduced
above is a particular example. A Bernoulli random variable can only assume
one of two possible values: 0 or 1; with probabilities (1� �) and �; respec-
tively. Often, the value 1 might be referred to as a success and the value 0 a
failure. Here, � is any number satisfying 0 < � < 1; since it is a probability.
Note that, here, � is the Greek letter pi (lower case), with English equiva-
lent p, and is not used here to denote the number Pi = 3:14159::: . Clearly,
di¤erent choices for � generate di¤erent probabilities for the outcomes of
interest; it is an example of a very simple statistical model which can be
written compactly as

p(y) = �y (1� �)1�y ; 0 < � < 1; y = 0; 1:

� note that we have used p(y) here rather than p(x): This is absolutely
inconsequential, since you should be able to satisfy yourself that p(0) =
1� � and p(1) = �; which is all that matters.

Another mathematical function of some importance, which also assigns
probabilities (but in a rather di¤erent way) is the cumulative (probability)
distribution function:

4.2.3 Cumulative distribution function

In the DISCRETE case the cumulative distribution function (cdf) is a
function which cumulates (adds up) values of p(x), the pmf. In general, it
is de�ned as the function:

P (x) = Pr(X � x);

e.g., P (1) = Pr(X � 1). Note the use of an upper case letter, P (:) ; for the
cdf, as opposed to the lower case letter, p (:) ; for the pmf. In the case of a
discrete random variable it is constructed as follows:

Suppose the discrete random variable, X; can take on possible values
x = a1; a2; a3; :::; etc, where the aj are an increasing sequence of numbers
(a1 < a2 < : : :). Then, for example, we can construct the following (cumu-
lative) probability:

Pr (X � a4) = P (a4) = p(a1) + p(a2) + p(a3) + p(a4) =
4X
j=1

p(aj);

i.e., we take all the probabilities assigned to possible values of X; up to
the value under consideration (in this case a4), and then add them up. It
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follows from the axioms of probability that
P
j p(aj) = 1; all the probabilities

assigned must sum to unity, as noted before. Therefore,

Pr (X � a4) = p (a4) + p (a5) + p (a6) + : : :

=

8<:X
j

p(aj)

9=;� fp (a1) + p (a2) + p (a3)g
= 1� Pr (X � a3) ;

and, similarly,
Pr (X > a4) = 1� Pr (X � a4)

which is always useful to remember.
As a more concrete example, consider the case where X = the number of

HEADs obtained from 3 �ips of a fair coin. In this case, there are just four
possible values of X with a1 = 0; a2 = 1; a3 = 2 and a4 = 3 in the notation
used above. Furthermore, due to independence, we can write that

� p(0) = Pr(X = 0) = Pr(T,T,T) = Pr (T)�Pr (T)�Pr (T) = (1=2)3 =
1=8

� p(1) = Pr(X = 1) = Pr(H,T,T) + Pr(T,H,T) + Pr(T,T,H)
= (1=2)3 + (1=2)3 + (1=2)3 = 1=8 + 1=8 + 1=8 = 3=8

� p(2) = Pr(X = 2) = Pr(H,H,T) + Pr(H,T,H) + Pr(T,H,H)
= (1=2)3 + (1=2)3 + (1=2)3 = 1=8 + 1=8 + 1=8 = 3=8

� p(3) = Pr(X = 3) = Pr(H,H,H) = (1=2)3 = 1=8

whilst

� P (2) = Pr(X � 2) = p(0) + p(1) + p(2) = 1=8 + 3=8 + 3=8 = 7=8

� Pr(X > 1) = 1� Pr (X � 1) = 1� (1=8 + 3=8) = 1=2:

� Note also that P (2:5) = P (X � 2:5) must be identical to P (2) =
Pr(X � 2) - think about it !

In fact, this is a very simple example of a Binomial distribution.

4.2.4 The Binomial random variable

Any experiment which can result in only one of two possible outcomes (suc-
cess with a probability denoted by � (0 < � < 1) and failure with probability
denoted by 1 � �) is called a Bernoulli experiment and gives rise to a so-
called Bernoulli random variable, as discussed above; e.g., (a) �ipping a coin
once: does it land head (1) or tail (0) ; (b) Opinion polls: should the UK
join EMU? Individuals answer yes (1) or no (0) :
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A random variable, X, is said to have a BINOMIAL distribution (and
is called a Binomial random variable) if it is de�ned to be the total number
of successes in n independent and identical Bernoulli experiments; e.g. (i)
the total number of heads (1�s) obtained when a coin is �ipped n times;
(ii) of 20 people randomly selected, how many were in favour of the UK
joining EMU; (ii) if you were to ask 10 students from this University�s large
student population if they are vegetarian then, of the 10; the total number
of vegetarians would be (approximately) a binomial random variable.

Note that the possible realisations of X are x = 0; 1; 2; :::; n: The Bino-
mial probability mass function is:

p(x) = P (X = x) =

�
n

x

�
�x(1� �)n�x; x = 0; 1; 2; :::; n; 0 < � < 1:

where �
n

x

�
=

n!

x!(n� x)! ;

and n! denotes n factorial : n! = n(n� 1)(n� 2):::2� 1; e.g., 3! = 6: In the
above formula, we de�ne 0! = 1: Note that

�
n
x

�
is called a combinatorial

coe¢ cient and always gives an integer; it simply counts the total number
of di¤erent ways that we can arrange exactly x �ones�and (n� x) �zeros�
together.. For example, consider in how may di¤erent ways we can arrange
(or combine) 2 �ones�and 1 �zero�. The possibilities are

(1; 1; 0) ; (1; 0; 1) ; (0; 1; 1)

and that�s it. There are only three ways we can do it. Using
�
n
x

�
we need to

substitute x = 2 and n = 3; since the total number of �ones�and �zeros�is
3: This gives

�
3
2

�
= 3!

2!1! = 3; as we discovered above.
Also, it is worth observing that the transformed random variable, Z =

X=n, de�nes the random variable which describes the proportion of suc-
cesses.

4.3 Examples of Probability Mass Functions for
Discrete Random Variables

4.3.1 Binomial Random Variable

As discussed in the main text,

p(x) = P (X = x) =

�
n

x

�
�x(1� �)n�x; x = 0; 1; 2; :::; n; 0 < � < 1;

and if a discrete random variable has such a probability mass function then
we say that is has a Binomial distribution with parameters n and �:
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Consider, then, a Binomial random variable, with parameters n = 5 and
� = 0:3:

p(2) = Pr(X = 2) =

�
5

2

�
(0:3)2 (0:7)3

=
5!

2!3!
(0:09) (0:343)

=
5� 4
2

(0:09) (0:343)

= 0:3087:

A cumulative probability is worked as follows:

P (2) = Pr (X � 2) = Pr (X = 0) + Pr (X = 1) + Pr (X = 2)

= p (0) + p (1) + p (2)

=

�
5

0

�
(0:3)0 (0:7)5 +

�
5

1

�
(0:3)1 (0:7)4 +

�
5

2

�
(0:3)2 (0:7)3

= 0:16807 + 0:36015 + 0:3087

= 0:83692:

4.3.2 Geometric Random Variable

As in the Binomial case, consider repeating independent and identical Bernoulli
experiments (each of which results in a success, with probability �; or a fail-
ure, with probability 1��). De�ne the random variable X to be the number
of Bernoulli experiments performed in order to achieve the �rst success. This
is a Geometric random variable.

The probability mass function is

p (x) = Pr (X = x) = � (1� �)x�1 ; x = 1; 2; 3; :::; 0 < � < 1;

and if a discrete random variable has suvh a probability mass function then
we say that is a Geometric distribution with parameter �:

Suppose the probability of success is � = 0:3: What is the probability
that the �rst success is achieved on the second experiment? We require

p (2) = Pr (X = 2) = (0:3) (0:7) = 0:21:

The probability that the �rst success is achieved on or before the third
experiment is

P (3) = Pr (X � 3)
= p (1) + p (2) + p (3)

= (0:3) (0:7)0 + (0:3) (0:7)1 + (0:3) (0:7)2

= (0:3)
�
1 + 0:7 + 0:72

�
= 0:657:
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4.3.3 Poisson Random Variable

The Poisson random variable is widely-used to count the number of events
occurring in a given interval of time. Examples include (i) the number of
cars passing an observation point, located on a long stretch of straight road,
over a 10 minute interval; (ii) the number of calls received at a telephone
exchange over a 10 second interval.

The probability mass function is

p (x) = Pr (X = x) =
�x

x!
exp (��) ; x = 0; 1; 2; :::; � > 0

in which, exp(:) is the exponential function (exp (a) = ea) and � is a positive
real number (a parameter). We say that X has a Poisson distribution with
parameter � (note that � will often be refered to as the mean which will be
discussed in Section 9).

Suppose that the number of calls, X; arriving at a telephone exchange
in any 10 second interval follows a Poisson distribution with � = 5:What is
Pr (X = 2)?

p (2) = Pr (X = 2) =
52

2!
exp (�5)

= 0:0842:

The probability of more than 2 calls is

Pr (X > 2) = 1� Pr (X � 2)
= 1� fPr (X = 0) + Pr (X = 1) + Pr (X = 2)g
= 1�

�
e�5 + 5� e�5 + 12:5� e�5

	
= 1� 0:1247
= 0:8753:

4.4 Using EXCEL to obtain probabilities: Bino-
mial & Poisson

Probabilities for various statistical models can be obtained using Paste
Function in EXCEL. To obtain BINOMIAL probabilities: click Paste
Function - the Paste Function Dialogue Box appears. Select Statisti-
cal from the Function Category box. In Function Name box select
BINOMDIST and then click OK - the BINOMDIST Dialogue Box ap-
pears. These two Dialogue Boxes are displayed below:
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Paste Function Dialogue Box

The BINOMDIST Dialogue Box

You have to �ll in number_s, trials, probability_s and cumulative.
Once this is done, the required probability will appear in the Formula
Result line at the bottom. This is illustrated above, showing you how to
obtain Pr(X � 2) = 0:99144; where X is a Binomial random variable which
records the number of successes in 5 trials, with the probability of success
equal to 0:1 (i.e., a Binomial random variable with n = 5 and � = 0:1). If
the �value� in the cumulative box is changed to false then the computed
probability will be Pr(X = 2):

You can also use this feature to calculate Poisson probabilities. The
Poisson Dialogue box looks like:
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The POISSON Dialogue Box

where the above illustration shows how to calculate Pr (X � 2) ; for a Poisson
random variable with � = 5 (referred to as the mean in EXCEL).
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Chapter 5

RANDOM VARIABLES &
PROBABILITY
DISTRIBUTIONS II

[HEALTH WARNING: Before reading this section you MUST revise
your undertanding of integration.]

In the previous section, we introduced the notion of a random variable
and, in particular a discrete random variable. It was then discussed how to
use mathematical functions in order to assign probabilities to the various
possible numerical values of such a random variable. A probability distri-
bution is a method by which such probabilities can be assigned and in the
discrete case this can be achieved via a probability mass function (pmf ).
Figure 6.1 illustrates the pmf for a particular binomial random variable.
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Figure 5.1: X = number of HEADS in three �ips of a fair coin

Notice how masses of probability are dropped onto the possible dis-
crete (isolated) outcomes. We now develop mathematical functions which

53
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can used to describe probability distributions associated with a continuous
random variable.

5.1 Continuous random variables

Recall that a random variable is a function applied on a sample space, by
which we mean that physical attributes of a sample space are mapped (by
this function) into a number. When a continuous random variable is applied
on a sample space, a range of possible numbers is implied (not just isolated
numbers as with a discrete random variable).

As an example, let X = �the contents of a reservoir�, where the appro-
priate sample space under consideration allows for the reservoir being just
about empty, just about full or somewhere in between. Here we might use-
fully de�ne the range of possible values for X as 0 < x < 1; with 0 signifying
�empty�and 1 signifying �full�. As noted before when talking about the char-
acteristics of continuous variables, theoretically, we can�t even begin to list
possible numerical outcomes for X; any value in the interval is possible.

How do we thus distribute probability in this case? Well, presumably
the probability must be distributed only over the range of possible values for
X; which, in the reservoir example, is over the unit interval (0; 1) : However,
unlike the discrete case where a speci�c mass of probability is dropped on
each of the discrete outcomes, for continuous random variables probability
is distributed more smoothly, rather like brushing paint on a wall, over the
whole interval of de�ned possible outcomes. Therefore in some areas the
distribution of probability is quite thick and others it can be relatively thin.
This is depicted in Figure 6.2.

a b0 1 x

 Pr(a < X ≤ b)

Figure 5.2: Distribution of probability

Some thought should convince you that for a continuous random vari-
able, X, it must be the case that Pr(X = c) = 0 for all real numbers c
contained in the range of possible outcomes of X: If this were not the case,
then the axioms of probability would be violated. However, there should
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be a positive probability of X being close, or in the neighbourhood, of c:
(A neighbourhood of c might be c � 0:01; say.) For example, although the
probability that the reservoir is exactly 90% full must be zero (who can mea-
sure 90% exactly?), the axioms of probability require that there is non-zero
probability of the reservoir being between, say, 85% and 95% full. (Indeed,
being able to make judgements like this is an eminently reasonable require-
ment if we wish to investigate, say, the likelihood of water shortages.) This
emphasizes that we can not think of probability being assigned at speci�c
points (numbers), rather probability is distributed over intervals of numbers.

We therefore must con�ne our attention to assigning probabilities of the
form Pr(a < X � b), for some real numbers a < b; i.e., what is the proba-
bility that X takes on values between a and b: For an appropriately de�ned
mathematical function describing how probability is distributed, as depicted
in Figure 6.2, this would be the area under that function between the values
a and b: Such functions can be constructed and are called probability density
functions. Let us emphasize the role of area again: it is the area under the
probability density function which provides probability, not the probability
density function itself. Thus, by the axioms of probability, if a and b are
in the range of possible values for the continuous random variable, X; then
Pr (a < X � b) must always return a positive number, lying between 0 and
1; no matter how close b is to a (provided only that b > a).

What sorts of mathematical functions can usefully serve as probability
density functions? To develop the answer to this question, we begin by
considering another question: what mathematical functions would be appro-
priate as cumulative distribution functions?

5.2 Cumulative distribution function (cdf )

For a continuous random variable,X; the cdf is a smooth continuous function
de�ned as F (x) = Pr(X � x), for all real numbers x; e.g., F (0:75) =
Pr(X � 0:75): The following should be observed:

� such a function is de�ned for all real numbers x; not just those which
are possible realisations of the random variable X;

� we use F (:); rather than P (:); to distinguish the cases of continuous
and discrete random variables, respectively.

Let us now establish the mathematical properties of such a function. We
can do this quite simply by making F (:) adhere to the axioms of probability.

Firstly, since F (x) is to be used to return probabilities, it must be that

0 � F (x) � 1; for all x:

Secondly, it must be a smooth, increasing function of x (over intervals
where possible values of X can occur). To see this, consider again the
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reservoir example and any arbitrary numbers a and b; satisfying 0 < a <
b < 1: Notice that a < b; b can be as a close as you like to a; but it must
always be strictly greater than a: Therefore, the axioms of probability imply
that Pr (a < X � b) > 0; since the event �a < X � b�is possible. Now divide
the real line interval (0; b] into two mutually exclusive intervals, (0; a] and
(a; b]: Then we can write the event �X � b�as

(X � b) = (X � a) [ (a < X � b) :

Assigning probabilities on the left and right, and using the axiom of proba-
bility concerning the allocation of probability to mutually exclusive events,
yields

Pr (X � b) = Pr (X � a) + Pr (a < X � b)

or
Pr (X � b)� Pr (X � a) = Pr (a < X � b) :

Now, since F (b) = Pr (X � b) and F (a) = Pr (X � a) ; we can write

F (b)� F (a) = Pr (a < X � b) > 0:

Thus F (b) � F (a) > 0; for all real numbers a and b such that b >
a; no matter how close. This tells us that F (x) must be an increasing
function and a little more delicate mathematics shows that it must be a
smoothly increasing function. All in all then, F (x) appears to be smoothly
increasing from 0 to 1 over the range of possible values for X: In the reservoir
example, the very simple function F (x) = x would appear to satisfy these
requirements; provided 0 < x < 1:

More generally, we now formally state the properties of a cdf. For com-
plete generality, F (x) must be de�ned over the whole real line even though
in any given application the random variable under consideration may only
be de�ned on an interval of that real line.

5.2.1 Properties of a cdf

A cumulative distribution function is a mathematical function, F (x); satis-
fying the following properties:

1. 0 � F (x) � 1.

2. If b > a then F (b) � F (a);
i.e., F is increasing.

In addition, over all intervals of possible outcomes for a continuous
random variable, F (x) is smoothly increasing; i.e., it has no sudden
jumps.
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3. F (x)! 0 as x! �1;
F (x)! 1 as x!1;
i.e., F (x) decreases to 0 as x falls, and increases to 1 as x rises.

Any function satisfying the above may be considered suitable for mod-
elling cumulative probabilities, Pr (X � x) ; for a continuous random vari-
able. Careful consideration of these properties reveals that F (x) can be �at
(i.e., non-increasing) over some regions. This is perfectly acceptable since
the regions over which F (x) is �at correspond to those where values of X
can not occur and. therefore, zero probability is distributed over such re-
gions. In the reservoir example, F (x) = 0; for all x � 0; and F (x) = 1; for
all x � 1; it is therefore �at over these two regions of the real line. This
particular examples also demonstrates that the last of the three properties
can be viewed as completely general; for example, the fact that F (x) = 0;
in this case, for all x � 0 can be thought of as simply a special case of the
requirement that F (x)! 0 as x! �1:

Some possible examples of cdf s, in other situations, are depicted in Fig-
ure 6.3.
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Figure 5.3: Some cdf�s for a continuous random variable

The �rst of these is strictly increasing over the whole real line, indicating
possible values of X can fall anywhere. The second is increasing, but only
strictly over the interval x > 0; this indicates that the range of possible values
for the random variable is x > 0 with the implication that Pr (X � 0) = 0:
The third is only strictly increasing over the interval (0 < x < 2) ; which
gives the range of possible values for X in this case; here Pr (X � 0) = 0;
whilst Pr (X � 2) = 0:
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Let us end this discussion by re-iterating the calculation of probabilities
using a cdf :

� Pr(a < X � b) = F (b)� F (a), for any real numbers a and b;

as discussed above.

� Pr(X � a) = 1 � Pr(X > a); since Pr (X � a) + Pr (X > a) = 1; for
any real number a;

and, �nally,

� Pr (X < a) = Pr (X � a) ; since Pr (X = a) = 0:

Our discussion of the cdf was introduced as a means of developing the
idea of a probability density function (pdf ). Visually the pdf illustrates how
all of the probability is distributed over possible values of the continuous
random variable; we used the analogy of paint being brushed over the sur-
face of a wall. The pdf is also a mathematical function satisfying certain
requirements in order that the axioms of probability are not violated. We
also pointed out that it would be the area under that function which yielded
probability. Note that this is in contrast to the cdf, F (x); where the func-
tion itself gives probability. We shall now investigate how a pdf should be
de�ned.

5.3 Probability Density Functions (pdf )

For a continuous random variable, it is well worth reminding ourselves of
the following:

� There is no function which gives Pr(X = x) for some number x, since
all such probabilities are identically zero.

However, and as discussed in the previous section, there is a smooth,
increasing, function F (x); the cdf, which provides Pr (X � x) : In particular

Pr (a < X � b) = F (b)� F (a);

for real numbers b > a: Also, since F (x) is smoothly continuous and di¤er-
entiable over the range of possible values for X (see Figure 6.3); then there
must exist a function f (x) = dF (x)=dx; the derivative of F (x): Note that
f(x) must be positive over ranges where F (x) is increasing; i.e., over ranges
of possible values for X: On the other hand, f(x) = 0; over ranges where
F (x) is �at; i.e., over ranges where values of X can not occur.
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Moreover, the Fundamental Theorem of Calculus (which simply states
that di¤erentiation is the opposite of integration) implies that if f(x) =
dF (x)=dx; then

F (b)� F (a) =
Z b

a
f(x)dx:

We therefore have constructed a function f(x) = dF (x)=dx; such that
the area under it yields probability (recall that the integral of a function
between two speci�ed limits gives the area under that function). Such a
function, f (x) ; is the probability density function.

In general, lima!�1 F (a) = 0; so by letting a ! �1 in the above we
can de�ne the fundamental relationship between the cdf and pdf as:

F (x) = Pr (X � x) =
Z x

�1
f(t)dt;

f(x) = dF (x)=dx;

i.e., F (x) is the area under the curve f(t) up to the point t = x: Now, letting
x!1, and remembering that limx!1 F (x) = 1; we �nd thatZ 1

�1
f(x)dx = 1;

i.e., total area under f(x) must equal 1 (rather like the total area of the
sample space as depicted by a Venn Diagram).

These de�nitions are all quite general so as to accommodate a variety
of situations; however, as noted before, implicit in all of the above is that
f(x) = 0 over intervals where no probability is distributed; i.e., where F (x)
is �at. Thus, in the reservoir example we could be more explicit with the
limits and write

F (x) =

Z x

0
f(t)dt; 0 < x < 1;

for some suitable function f(:); since f(t) = 0 for all t � 0; and all t � 1:
For example, suppose the contents of the reservoir can be modelled by the
continuous random variable which has probability density function

f(x) =

�
3(1� x)2; 0 � x � 1

0; otherwise.

We can then calculate the probability that the reservoir will be over 75%
full as:

Pr (X > 0:75) =

Z 1

0:75
3(1� x)2dx

= �
�
(1� x)3

�1
0:75

=

�
1

4

�3
=

1

64
:
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Figure 6.4 also gives a simple example of a cdf and pdf, where proba-
bility is distributed uniformly over a �nite interval (in this case, it is the
unit interval [0; 1]). Such a distribution is therefore said to be uniform.For

F x
x

x x
x

f x
x

x
x

( )
,
,
,

;

( )
,
,
,

=
<

≤ ≤
>













=
<

≤ ≤
>













0 0
0 1

1 1

0 0
1 0 1
0 1

F(x)
1

0 1
1

0 1

x

x

f(x)

Figure 5.4: A simple cdf and pdf

example,

Pr (0:25 < X � 0:5) = F (0:5)� F (0:25) = 1

2
� 1
4
=
1

4
:

Alternatively, using the pdf,

Pr (0:25 < X � 0:5) =
Z 0:5

0:25
f(x)dx = 0:25:

Also note that the total area under f(x); over the unit interval, is clearly
equal to 1:

To recap, then, let us list the properties of the pdf.

5.3.1 Properties of the pdf

A pdf for a continuous random variable is a mathematical function which
must satisfy,

1. f(x) � 0

2.
R1
�1 f(x)dx = 1

Probabilities can be calculated as:

� Pr(a < X � b) =
R b
a f(x)dx

� i.e., it is the area under the pdf which gives probability
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and the relationship with cdf is given by:

� � f(x) = dF (x)=dx

�F (x) =
R x
�1 f(t)dt:

5.4 Exponential Distribution

Let the continuous random variable, denoted X; monitor the elapsed time,
measured in minutes, between successive cars passing a junction on a partic-
ular road. Tra¢ c along this road in general �ows freely, so that vehicles can
travel independently of one another, not restricted by the car in front. Oc-
casionally, there are quite long intervals between successive vehicles, while
more often there are smaller intervals. To accommodate this, the following
pdf for X is de�ned:

f(x) =

�
exp(�x); x > 0;
0; x � 0:

The graph of f(x) looks is depicted in Figure 6.5.

Figure 5.5: Exponential pdf

Now, you might care to verify that
R1
0 exp(�x)dx = 1; and from the

diagram it is clear that

Pr (a < X � a+ 1) > Pr (a+ 1 < X � a+ 2) ;

for any number a > 0: By setting a = 1; say, this implies that an elapsed
time of between 1 and 2 minutes has greater probability than an elapsed
time of between 2 and 3 minutes; and, in turn, this has a greater probability
than an elapsed time of between 3 and 4 minutes, etc; i.e., smaller intervals
between successive vehicles will occur more frequently than longer ones.
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Suppose we are interested in the probability that 1 < X � 3? i.e.,
the probability that the elapsed time between successive cars passing is
somewhere between 1 and 3 minutes? To �nd this, we need

Pr (1 < X � 3) =

Z 3

1
exp(�x)dx

= [� exp(�x)]31
= e�1 � e�3

= 0:318:

One might interpret this as meaning that about 32% of the time, successive
vehicles will be between 1 and 3 minutes apart.

The above distribution is known as the unit exponential distribution. In
general, we say that the continuous random variable X has an exponential
distribution if it has probablity density function given by

f(x) =
1

�
exp

�
�x
�

�
; x > 0; � > 0

where � is called the parameter of the distribution (sometimes the mean,
which will be discussed in Section 8). Note that when � = 1; we get back to
the special case of the unit exponential distribution. Notice that the random
variable, here, can only assume positive values.

Note that Z 1

0
f(x)dx =

Z 1

0

1

�
exp

�
�x
�

�
dx

=
h
� exp

�
�x
�

�i1
0

= 1

so that it is a proper probability density function (clearly, also, f (x) > 0
for all x > 0).

5.5 Revision: Properties of the Exponential Func-
tion

Refer to ES1070 Maths notes or ES2281 Maths notes. There is also addi-
tional material on the course website.

1. y = ex is a strictly positive and strictly increasing function of x

2. dy
dx = e

x and d2y
dx2

= ex

3. ln y = x

4. When x = 0; y = 1; and y > 1 when x > 0; y < 1 when x < 0

5. By the chain rule of di¤erentiation, if y = e�x then dy
dx = �e

�x:
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5.6 Using EXCEL to obtain probabilities: The Ex-
ponential Distribution

Probabilities for various statistical models can be obtained using Paste
Function in EXCEL. To obtain EXPONENTIAL probabilities: click
Paste Function - the Paste Function Dialogue Box appears. Select Sta-
tistical from the Function Category box. In Function Name box select
EXPONDIST and then click OK - the EXPONDIST Dialogue Box ap-
pears. These two Dialogue Boxes are displayed below:

Paste Function Dialogue Box

The EXPONDIST Dialogue Box

You have to �ll inX, Lambda, and cumulative. Once this is done, the
required probability will appear in the Formula Result line at the bottom.
This is illustrated above, showing you how to obtain Pr(X � 3) = 0:77687;
where X is an Exponential random variable with parameter � = 0:5. Note
that the value for � (lambda) required by EXCEL is the inverse value of
the parameter � de�ned in the notes above; i.e., � = ��1: Thus EXCEL
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parameterises the exponential probability density function as

f(x) = � exp(��x); x > 0; � > 0:

If the �value�in the cumulative box is changed from true to false then the
formula result will simply give the value of the probability density function;
i.e., in this case, 0:5 exp(�1:5) = 0:111565; which is not a probability.

5.7 Exercise 3

1. In an experiment, if a mouse is administered dosage level A of a certain
(harmless) hormone then there is a 0:2 probability that the mouse will
show signs of aggression within one minute. For dosage levels B and
C; the probabilities are 0:5 and 0:8; respectively. Ten mice are given
exactly the same dosage level of the hormone and, of these, exactly 6
shows signs of aggression within one minute of receiving the dose.

(a) Calculate the probability of this happening for each of the three
dosage levels, A;B and C: (This is essentially a Binomial random
variable problem, so you can check your answers using EXCEL.)

(b) Assuming that each of the three dosage levels was equally likely
to have been administered in the �rst place (with a probability
of 1=3), use Bayes�Theorem to evaluate the likelihood of each of
the dosage levels given that 6 out of the 10 mice were observed
to react in this way.

2. Let X be the random variable indicating the number of incoming
planes every k minutes at a large international airport, with proba-
bility mass function given by

p(x) = Pr(X = x) = (0:9k)x

x! exp(�0:9k); x = 0; 1; 2; 3; 4; ::: .

Find the probabilities that there will be

(a) exactly 9 incoming planes during a period of 5 minutes (i.e., �nd
Pr(X = 9) when k = 5);

(b) fewer than 5 incoming planes during a period of 4 minutes (i.e.,
�nd Pr(X < 5) when k = 4);

(c) at least 4 incoming planes during an 2 minute period (i.e., �nd
Pr(X � 4) when k = 2).

Check all your answers using EXCEL.
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3. The random variable Y is said to be Geometric if it has probability
mass function given by

p(y) = Pr(Y = y) = (1� �)�y�1; y = 1; 2; 3; :::; 0 < � < 1;

where � is an unknown �parameter�.
Show that the cumulative distribution function can be expressed as

P (y) = Pr(Y � y) = 1� �y; y = 1; 2; 3; :::

with P (y) = 0 for y � 0 and P (y)! 1 as y !1:
(Note that P (y) = p(1) + p(2) + :::+ p(y) =

Py
t=1 p(t) can be written

in longhand as

P (y) = (1� �)
�
1 + � + �2 + �3 + : : :+ �y�1

�
:

The term in the second bracket on the right-hand side is the sum of a
Geometric Progression.)

4. The weekly consumption of fuel for a certain machine is modelled by
means of a continuous random variable, X; with probability density
function

g(x) =

�
3(1� x)2; 0 � x � 1;

0; otherwise:

Consumption, X; is measured in hundreds of gallons per week.

(a) Verify that
R 1
0 g(x)dx = 1 and calculate Pr(X � 0:5):

(b) How much fuel should be supplied each week if the machine is to
run out fuel 10% of the time at most? (Note that if s denotes the
supply of fuel, then the machine will run out if X > s:)

5. The lifetime of a electrical component is measured in 100s of hours by
a random variable T having the following probability density function

f(t) =

�
exp(�t); t > 0;
0; otherwise:

(a) Show that the cumulative distribution function, F (t) = Pr(T � t)
is given by

F (t) =

�
1� exp(�t); t > 0
0 t � 0:

(b) Show the probability that a component will operate for at least
200 hours without failure is Pr(T � 2) �= 0:135:?
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(c) Three of these electrical components operate independently of one
another in a piece of equipment and the equipment fails if ANY
ONE of the individual components fail. What is the probability
that the equipment will operate for at least 200 hours without
failure? (Use the result in (b) in a binomial context).



Chapter 6

THE NORMAL
DISTRIBUTION

It could be argued that the most important probability distribution en-
countered thus far has been the Binomial distribution for a discrete random
variable monitoring the total number of successes in n independent and iden-
tical Bernoulli experiments. Indeed, this distribution was proposed as such
by Jacob Bernoulli (1654-1705) in about 1700. However as n becomes large,
the Binomial distribution becomes di¢ cult to work with and several math-
ematicians sought approximations to it using various limiting arguments.
Following this line of enquiry two other important probability distributions
emerged; one was the Poisson distribution, due to the French mathematician
Poisson (1781-1840), and published in 1837. An exercise using the Poisson
distribution is provided by Question 2, in Exercise 3. The other, is the
normal distribution due to De Moivre (French, 1667-1754), but more com-
monly associated with the later German mathematician, Gauss (1777-1855),
and French mathematician, Laplace (1749-1827). Physicists and engineers
often refer to it as the Gaussian distribution. There a several pieces of
evidence which suggest that the British mathematician/statistician, Karl
Pearson (1857-1936) coined the phrase normal distribution.

Further statistical and mathematical investigation, since that time, has
revealed that the normal distribution plays a unique role in the theory of
statistics; it is without doubt the most important distribution. We introduce
it here, and study its characteristics, but you will encounter it many more
times in this, and other, statistical or econometric courses.

Brie�y the motivation for wishing to study the normal distribution can
be summarised in three main points:

� it can provide a good approximation to the binomial distribution

� it provides a natural representation for many continuous random vari-
ables that arise in the social (and other) sciences

67
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� many functions of interest in statistics give random variables which
have distributions closely approximated by the normal distribution.

We shall see shortly that the normal distribution is de�ned by a par-
ticular probability density function; it is therefore appropriate (in the strict
sense) for modelling continuous random variables. Not withstanding this,
it is often the case that it provide an adequate approximation to another
distribution, even if the original distribution is discrete in nature, as we shall
now see in the case of a binomial random variable.

6.1 The Normal distribution as an approximation
to the Binomial distribution

Consider a Binomial distribution which assigns probabilities to the total
number of successes in n identical applications of the same Bernoulli exper-
iment. For the present purpose we shall use the example of �ipping a coin a
number of times (n). Let the random variable of interest be the proportion
of times that a HEAD appears and let us consider how this distribution
changes as n increases:

� If n = 3, the possible proportions could be 0; 1=3; 2=3 or 1

� If n = 5, the possible proportions could be 0; 1=5; 2=5; 3=5; 4=5 or 1

� If n = 10, the possible proportions could be 0; 1=10; 2=10; etc ...

The probability distributions, over such proportions, for n = 3; 5; 10 and
50; are depicted in Figure 7.1.

Notice that the �bars�, indicating where masses of probability are dropped,
get closer and closer together until, in the limit, all the space between them
is squeezed out and a bell shaped mass appears, by joining up the tops of
every bar: this characterises the probability density function of the NOR-
MAL DISTRIBUTION.

Having motivated the normal distribution via this limiting argument,
let us now investigate the fundamental mathematical properties of this bell-
shape.

6.2 The Normal distribution

The normal distribution is characterised by a particular probability density
function f(x); the precise de�nition of which we shall divulge later. For the
moment the important things to know about this function are:

� it is bell-shaped
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Figure 6.1: The changing shape of the Binomial distribution

� it tails o¤ to zero as x! �1

� area under f(x) gives probability; i.e., Pr (a < X � b) =
R b
a f(x)dx:

Figure 7.2: The Normal density function (the classic bell shape)

The speci�c location and scale of the bell depend upon two parameters (real
numbers) denoted � and � (with � > 0), as depicted in Figures 7.2. � is the
Greek letter mu (with English equivalent m) and � is the Greek letter sigma
with (English equivalent s). Changing � relocates the density (shifting it
to the left or right) but leaving it�s scale and shape unaltered. Increasing �
makes the density �fatter�with a lower peak; such changes are illustrated in
Figure 7.3.
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Figure 7.3: Location (�) and scale (�) changes

Furthermore:

� f(x) is symmetric about the value x = �; i.e., f(�+ c) = f(�� c); for
any real number c:

� f(x) has points of in�ection at x = � � �; i.e., d2f(x)=dx2 is zero at
the values x = �+ � and x = �� �:

The above describes all the salient mathematical characteristics of the
normal pdf. For what it�s worth, although you will not be expected to
remember this, the density is actually de�ned by:

f(x) =
1

�
p
2�
exp

�
�(x� �)

2

2�2

�
; �1 < x <1; �1 < � <1; � > 0;

and we say that a continuous random variable X has a normal distribution
if and only if it has pdf de�ned by f(x); above. Here, � is the number
Pi = 3:14159::: . In shorthand, we write X � N

�
�; �2

�
; meaning �X is

normally distributed with location � and scale ��. However, a perfectly
acceptable alternative is to say �X is normally distributed with mean � and
variance �2�, for reasons which shall become clear in the next section.

An important special case of this distribution arises when � = 0 and
� = 1; yielding the standard normal density:

6.2.1 The standard normal density.

If Z � N(0; 1), then the pdf for Z is written

�(z) =
1p
2�
exp(�z2=2); �1 < z <1;

where � is the Greek letter phi, equivalent to the English f . The pdf, � (z) ;
is given a special symbol because it is used so often and merits distinc-
tion. Indeed, the standard normal density is used to calculate probabilities
associated with a normal distribution, even when � 6= 0 and/or � 6= 1:
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6.3 The normal distribution as a model for data

Apart from its existence via various mathematical limiting arguments, the
normal distribution o¤ers a way of approximating the distribution of many
variables of interest in the social (and other) sciences. For example, in
Exercise 2, some statistics were provided from The Survey of British Births
which recorded the birth-weight of babies born to mothers who smoked
and those who didn�t. Figure 7.4, depicts the histogram of birth-weights for
babies born to mothers who had never smoked. Superimposed on top of that
is normal density curve with parameters set at � = 3353:8 and � = 572:6:
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Figure 7.4: Histogram of birth weights and normal density

As can be seen, the �tted normal density does a reasonable job at tracing
out the shape of the histogram, as constructed from the data. (I will leave it
as a matter of conjecture as to whether the birth-weights of babies born to
mothers who smoked are normal.) The nature of the approximation here is
that areas under the histogram record the relative frequency, or proportion
in the sample, of birth-weights lying in a given interval, whereas the area
under the normal density, over the same interval, gives the probability.

Let us now turn the question of calculating such probabilities associated
with a normal distribution.

6.4 Calculating probabilities

Since f(x) is a pdf, to obtain probabilities we need to think area which
means we have to integrate. Unfortunately, there is no easy way to integrate
�(z), let alone f(x): To help us, however,

� special (statistical) tables (or computer packages such as EXCEL) pro-
vide probabilities about the standard normal random variable Z �
N(0; 1);
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and

� from this initial calculation, probability statements aboutX � N(�; �2)
are easily obtained.

To develop how this works in practice, we require some elementary prop-
erties of Z � N(0; 1)

6.4.1 A few elementary properties: Z � N(0; 1)
Firstly, we introduce the cdf for Z; This functions is denoted � (z) ; where
� is the upper case Greek F; and is de�ned as follows:

�(z) = Pr(Z � z) =
Z z

�1
�(t)dt;

the area under �(:) up to the point z; with �(z) = d�(z)=dz.
Now, due to symmetry of �(z) about the value z = 0; it follows that:

�(0) = Pr(X � 0) = 1=2

and, in general,

�(�z) = Pr(Z � �z)
= Pr(Z > z)

= 1� Pr(Z � z)
= 1� �(z):

The role of symmetry and calculation of probabilities as areas under �(z)
is illustrated in Figure 7.5. In this diagram, the area under �(z) is divided
up into 2 parts: the area to the left of a which is �(a); and the area to the
right of a which is 1� �(a): These areas add up to 1:

Figure 7.5: Area gives probability and symmetry is useful
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Armed with these properties we can now use the �standard normal�
table of probabilities. Such a table is given in the Appendix to these course
notes. These are exactly the tables which you will be expected to use in the
examination.

The probabilities provided by this table are of the form Pr(Z � z) =
�(z), for values of 0 < z < 1. (Pr(Z � z) for values of z < 0 can be
deduced using symmetry.) For example, you should satisfy yourself that
you understand the use of the table by verifying that,

Pr(Z � 0] = 0:5; Pr(Z � 0:5) = 0:691;
Pr(Z � 1:96) = 0:975; Pr(Z � 1) = Pr(Z � �1) = 0:159; etc:

The calculation of the probability

Pr(�1:62 < Z � 2:2) = Pr(Z � 2:2)� Pr(Z � �1:62)
= 0:986� 0:053
= 0:933

is illustrated in Figure 7.6.

Figure 7.6: Pr(�1:62 < Z � 2:2) = 0:933

In this diagram, the areas are divided into 3 mutually exclusive parts:
the area to the left of z = �1:62; which equals 0:053; the area to the right
of z = 2:2; which is equal to 0:014; and the area in between, which is equal
to 0:933 the required probability.

6.4.2 Calculating probabilities when X � N(�; �2).

We can calculate probabilities associated with the random variable X �
N(�; �2); by employing the following results which shall be stated without
proof:
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� If Z � N(0; 1), then X = �Z + � � N(�; �2):

� If X � N
�
�; �2

�
; then Z = X��

� � N (0; 1) :

For example, if Z � N (0; 1) ; then X = 3Z + 6 � N (6; 9) ; and, if
X � N (4; 25) ; then Z = X�4

5 � N (0; 1) :
It therefore transpires that if X � N(�; �2), probabilities about X can

be obtained from probabilities about Z via the relationship X = �Z + �;
since we can then write Z = X��

� :

Let X � N(�; �2); with Z = X��
� � N (0; 1) ; then

Pr(a < X � b) = Pr (a� � < X � � < b� �) ; subtract � throughout,

= Pr
�
a��
� < X��

� � b��
�

�
; divide through by � > 0 throughout,

= Pr
�
a��
� < Z � b��

�

�
; where Z � N (0; 1) ;

= Pr
�
Z � b��

�

�
� Pr

�
Z � a��

�

�
;

= �
�
b��
�

�
� �

�a��
�

�
:

We thus �nd that Pr(a < X � b) = �
�
b��
�

�
��

�a��
�

�
; and the proba-

bilities on the right hand side are easily determined from Standard Normal
Tables. The following example illustrates the procedure in practice:

� Example: Let X � N(10; 16); what is Pr(0 < X � 14) ?
Here, � = 10; � = 4; a = 0; b = 14; so, a��� = �2:5 and b��

� = 1.

Therefore, the required probability is:

Pr(�2:5 < Z � 1) = Pr (Z � 1)� Pr (Z � �2:5)
= 0:841� 0:006 = 0:835:

� Example: A fuel is to contain X% of a particular compound. Speci�-
cations call for X to be between 30 and 35: The manufacturer makes
a pro�t of Y pence per gallon where

Y =

8<:
10; if 30 � x � 35
5; if 25 � x < 30 or 35 < x � 40
�10; otherwise:

If X � N(33; 9); evaluate Pr (Y = 10; ) Pr (Y = �10) and, hence,
Pr (Y = 5) :
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Here, X � N (33; 9) ; i.e., � = 33 and � = 3: Now, since X�33
3 �

N(0; 1) :

Pr (Y = 10) = Pr (30 � X � 35)

= Pr

�
30� 33
3

� X � 33
3

� 35� 33
3

�
= Pr (Z � 2=3)� Pr (Z � �1) ; where Z � N (0; 1)
= � (2=3)� � (�1)
= 0:74857� 0:15866
= 0:58991:

Similar calculations show that

Pr (Y = �10) = Pr (fX < 25g [ fX > 40g)
= 1� Pr (25 � X � 40)

= 1� Pr
�
25� 33
3

� X � 33
3

� 40� 33
3

�
= 1� f� (7=3)� � (�8=3)g
= 1� 0:99010 + 0:00379
= 0:01369:

Thus, Pr (Y = 5) = 1� 0:58991� 0:01369 = 0:3964:

6.5 Using EXCEL to obtain Probabilities for a
Normal random variable

To obtain probabilities associated with the normal distribution: click Paste
Function - the Paste Function Dialogue Box appears. Select Statistical
from the Function Category box. In Function Name box select NOR-
MDIST and then click OK - the NORMDIST Dialogue Box appears:

NORMDIST Dialogue Box
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This allows you to obtain Pr(X � x); where X � N(�; �2): You need
to supply x; � (the mean), � (the standard deviation) and a value for
cumulative, which should be true in order to obtain Pr(X � x):

Two other useful functions areNORMINV andNORMSINV. NORM-
SINV returns the inverse standard normal distribution function. That is if
you supply a probability, say p; then you obtain the number z such that
Pr (Z � z) = p; where Z � N (0; 1) : The NORMSINV Dialogue Box looks
like

The NORMSINV Dialogue Box

where, here, the supplied probability is 0:95 and the result is 1:644853;
i.e., Pr (Z � 1:644853) = 0:95:

NORMINV operates in a similar fashion, but for a general N
�
�; �2

�
distribution (so you also need to supply � and �).



Chapter 7

MOMENTS AND
EXPECTATION

7.1 Introduction

We have, thus far, developed the fundamental properties of probability dis-
tributions for both continuous and discrete random variables. These dis-
tributions are mathematical models which assign probabilities to various
numerical values of the random variable under consideration. The proba-
bility mass function drops masses of probability onto speci�c values of the
discrete random variable whereas the probability density function distributes
the probability smoothly over the range of possible values of a continuous
random variable. However, further theoretical properties (characteristics) of
these distributions tell us how, exactly, these probabilities are assigned. For
example, if X � N

�
�; �2

�
; consider the various possibilities for Pr (X � 2)?

For � = 0; � = 1; the probability is 0:977; whereas for � = 1; � = 4; the
probability is 0:599: Thus, changing the values of � and � changes the allo-
cation of probability.

The properties of interest which can a¤ect the allocation of probability
are called MOMENTS, and we shall be concerned with those moments
which a¤ect the location and scale of a probability distribution. Of particu-
lar importance are the theoretical (or population) mean and theoretical
variance. These are quantities derived from theoretical mathematical mod-
els, and should not be confused with the sample mean and sample variance
which are calculated from the observed sample data. We use the term popu-
lation here because a mathematical/statistical model is often put forward as
an appropriate description of the population from which a sample is drawn.

The relationship between theoretical and sample mean is motivated as
follows.

77



78 CHAPTER 7. MOMENTS AND EXPECTATION

7.2 Motivation for the DISCRETE case

LetX be a discrete random variable, which when applied can yield any one of
r possible values denoted a1; a2; :::; ar: Suppose that a suitable experiment is
performed which can give rise to n observed values of this random variable.
Let f1 denote the number of times a1 occurs, f2 the number of times a2
occurs, etc, once the experiment has been performed, with

Pr
j=1 fj = n:

On the basis of observed sample data the sample mean would be

�X =
1

n
(f1a1 + f2a2 + : : :+ frar) =

rX
j=1

ajwj ;

where wj = fj=n is the relative frequency of outcome aj , with
Pn
j=1wj = 1:

In this from �X is a weighted average of the aj�s with the weights being the
relative frequencies.

Now, the relative frequency interpretation of probability says that, if n
is large, the relative frequency of observing outcome aj should settle down
to the probability of so doing; i.e., as n increases, wj �= p(aj) = Pr(X = aj).
Then, substituting p(aj) for wj in the expression for the sample mean, we
have in theory that �X should settle down to what is known as the THE-
ORETICAL MEAN. This quantity is denoted by � or E[X] and de�ned
as:

� = E[X] =
rX
j=1

ajp(aj);

and is also referred to as the EXPECTED VALUE of X:
The following points are worth remembering:

� the mean, E[X], has the interpretation of being the balancing point
of the distribution;

� �the mean of X� and �the mean of the distribution� are equivalent
expressions;

� in the discrete case, E[X] = � need not necessarily be one of the
possible outcomes of X;

� on occasion, we may need to write �X as the mean of X; to distinguish
it from �Y the mean of another random variable Y:

Consider Figure 8.1, which depicts the probability mass function for, X;
the number of dots on the upturned face after rolling a fair die. From visual
inspection (and elementary physics) is seems clear that the balancing point
of the probability distribution is located at x = 3:5; which is not one of the
possible outcomes of X: This can be veri�ed using the above formula, where
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outcomes, aj ; are simply the integers 1 to 6 and all probabilities are equal
to 1

6 . Then

E[X] = f1� (1=6)g+ f2� (1=6)g+ :::+ f6� (1=6)g = 3:5

654321

0.2

0.1

0.0

number of dots

pr
ob

ab
ilit

y

Rolling a die

Figure 8.1: Discrete uniform: mean = balancing point= 312

In general, for a discrete random variable X; the theoretical mean, or
expectation, is de�ned as

E[X] = � =
X
x

xPr(X = x);

where the sum is taken over all possible values of x for which Pr(X = x) 6= 0:

� Example: Consider again the example given at the end of Section 7
where a fuel is to contain X% of a particular compound. Speci�cations
call for X to be between 30 and 35: The manufacturer makes a pro�t
of Y pence per gallon where

Y =

8<:
10; if 30 � x � 35
5; if 25 � x < 30 or 35 < x � 40
�10; otherwise:

If X � N(33; 9); evaluate E[Y ]:What pro�t per gallon must be gained
on those loads for which 30 � x � 35 to increase expected pro�t by
50%?

Since Y is a discrete random variable its mean is given by (the required
probabilities were obtained previously)

E [Y ] = 10� Pr (Y = 10) + 5� Pr (Y = 5)� 10� Pr (Y = �10)
= 10� 0:58991 + 5� 0:3964� 10� 0:01369
= 7:74.
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To increase expected pro�t by 50%; we require E [Y ] = 11:6; (= 7:74�
1:5): We therefore need to solve the following equation for p� :

11:6 = p� � Pr (Y = 10) + 5� Pr (Y = 5)� 10� Pr (Y = �10)
= p� � 0:58991 + 1:7101

, p� = 16:7651 �= 17.

The theoretical mean, E [X] ; is referred to as the �rst moment about
the origin; other moments are also of interest as follows.

7.2.1 Higher order moments

Consider the random variable Xs; for some positive integer s (e.g., s = 2).
If X can assume values x; then Xs assumes values xs: We can also take the
expectation of the random variable Xs:

� E[Xs] =
P
x x

s Pr(X = x)

� Example: Rolling a fair die.

E[X2] = [1 + 4 + 9 + 16 + 25 + 36]=6 = 15
1

6
:

More generally, we can take the expectation of any function of X; pro-
vided the function itself is mathematically de�ned. Suppose that X can
assume values denoted by x; and that g(x) exists; then

E[g(X)] =
X
x

g(x) Pr(X = x)

A particular application of this is when g(X) = (X � �)2, where � =
E [X] ; in which case we get what is called the theoretical variance as E

h
(X � �)2

i
:

7.2.2 The variance

The variance of a random variable (distribution), denoted var[X], charac-
terises the spread, or scale, of the distribution and is a positive real number.
In terms of expectation, the variance is de�ned as the expected squared
distance of X from its mean (location): i.e.,

var[X] = E[(X � �)2] > 0;

where � = E[X]:
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� var[X] is sometimes called the second moment about the mean.

In the case of the discrete random variable, it is calculated as:

var[X] = �2 =
X
x

(x� �)2 Pr(X = x):

In the same way that the sample mean of observations settles down
to the theoretical mean of the distribution (population) from which the
sample was drawn, the sample variance can be expected to settle down to the
corresponding theoretical variance. As with the mean, we may on occasion
write �2X to denote the variance of X; with �2Y denoting the variance of
another random variable, Y: Rather, than the variance (which is measured in
squared units of the original variable), we often report the standard deviation
(which is measured in the same units as the variable):

� The standard deviation is the positive square root of the variance and
is denoted by �: Thus, for example, �X = +

p
var [X]; and may on

occasion be written sd [X] :

For example, the fuel consumption of a car may have a mean of 33 mpg
and a standard deviation of 9 mpg; the variance in this case would be 81
mpg2:

� Example: Rolling fair die.

var[X] = [(2:5)2 + (1:5)2 + (0:5)2 + (0:5)2 + (1:5)2 + (2:5)2]=6 = 35=12:

sd [X] = +

r
35

12
�= 1:7:

As you will see later, understanding linear combinations (or linear trans-
formations) of random variables plays a crucial role in the development of
statistical inference. We therefore introduce some important preliminary
results now.

7.3 The e¤ect of linear transformations

The idea of a linear transformation is extremely simple. If X is some ran-
dom variable and a and b are known constants (i.e., not random variables
themselves), then aX+ b represents a linear transformation X:We have the
following results:

1. E[aX + b] = aE[X] + b

Proof :
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In the discrete case, let p(x) = Pr (X = x) ; then

E [aX + b] =
X
x

(ax+ b)p(x)

=
X
x

(axp(x) + bp(x))

= a
X
x

xp(x) + b
X
x

p(x)

= aE[X] + b;

since
P
x p(x) = 1 and

P
x xp(x) = E[X]; by de�nition. This result

has great applicability; for example, if Y = X2; then E [aY + b] =
aE[Y ]+b = aE[X2]+b; etc. In particular any multiplicative constants,
like a here, can be moved outside of the expectations operator, E[:]:

� Example: Rolling a fair die.

E[4X + 1] = 4� (3:5) + 1 = 15:

The next result concerns the variance of a linear transformation.

2. var[aX + b] = a2var[X]

Proof :

De�ne the new random variable, W = aX + b: Then it is clear that
var [aX + b] = var [W ] : Thus, we need var [W ] : Since W is a random
variable, we have by de�nition that

var [W ] = E
h
(W � E[W ])2

i
;

it is the expected squared distance of W from its mean. But from
above we know that

E [W ] = E[aX + b]

= aE[X] + b:

Therefore, since W = aX + b

var [W ] = E
h
(aX + b� aE[X]� b)2

i
= E

h
(aX � aE[X])2

i
= E

h
fa (X � E[X])g2

i
= E

h
a2 (X � E[X])2

i
:
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Then, noting that a2 is a multiplicative constant we can move it outside
of the expectations operator to give

var [W ] = a2E
h
(X � E [X])2

i
= a2var [X] ;

by de�nition of var [X] :

� Example: Rolling a fair die.

var[4X + 1] = 16� 35=12 = 462
3

Moments, means and variances, can also be de�ned for continuous ran-
dom variables as well. Here, we simply substitute the pdf for the pmf, and
change the sum to a smooth integral.

7.4 The continuous case

Let X be a continuous random variable with density function f(x): Means,
variances etc are de�ned as follows, where integration is e¤ectively over the
range of x, for which f(x) > 0:

1. The mean of X; E [X] ;

E[X] = � =

Z 1

�1
xf(x)dx

2. The variance of X; var [X] ;

var[X] = �2 =

Z 1

�1
(x� �)2f(x)dx

3. For admissible functions g(X);

E[g(X)] =

Z 1

�1
g(x)f(x)dx:

� Example: Suppose X has a continuous uniform density function

f(x) = 1=6; 0 < x < 6

= 0; otherwise:

�E[X] = 3; clearly, it is the balancing point (you can check thatR 6
0
x
6dx = 3:)
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� var[X] = 1
6

R 6
0 (x� 3)

2dx = 3:

The linear transformation results apply in the continuous case as well:

E[aX + b] = aE[X] + b

whilst

var[aX + b] = a2var[X]:

The interpretation for E[X] and var [X] are the same as in the discrete
case. E [X] is informative about where on the real line the centre of the
probability distribution is located and var [X] tells us something about how
dispersed the probability distribution is about that central value; i.e., the
spread or scale of the distribution.

7.5 Calculating a variance

In some situations, the calculation of var[X] can be eased using the above
results:

var[X] = E[(X � �)2]; where � = E[X];

= E[X2 � 2�X + �2]

= E[X2]� �2

i.e., var[X] = E[X2]� fE[X]g2 :
In the continuous uniform example above, we have that

E[X2] =
1

6

Z 6

0
x2dx = 12

and fE[X]g2 = 9; so var [X] = 12 � 9 = 3; which agrees with the previous
calculation.

� Example: Consider a continuous random variable, X; having the foll-
woing probability density function

f(x) = 3(1� x)2; 0 < x < 1:
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We can establish its mean and variance as follows:

E [X] = 3

Z 1

0
x (1� x)2 dx

= 3

Z 1

0

�
x� 2x2 + x3

	
dx

= 3

�
x2

2
� 2x

3

3
+
x4

4

�1
0

= 3

�
1

2
� 2
3
+
1

4

�
=

1

4

and

E
�
X2
�
= 3

Z 1

0
x2 (1� x)2 dx

= 3

Z 1

0

�
x2 � 2x3 + x4

	
dx

= 3

�
x3

3
� 2x

4

4
+
x5

5

�1
0

= 3

�
1

3
� 1
2
+
1

5

�
=

1

10
:

So that

var [X] = E
�
X2
�
� fE [X]g2

=
1

10
� 1

16

=
3

80:

7.6 Means and Variances for some Discrete Dis-
tributions

The following results are stated without proof. For the interested reader,
proofs are available on the course website.
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Binomial distribution

p(x) =

�
n

x

�
�x(1� �)n�x; x = 0; 1; 2; :::; n; 0 < � < 1

E [X] = n�

var [X] = n� (1� �)

Geometric distribution

p (x) = � (1� �)x�1 ; x = 1; 2; 3; :::; 0 < � < 1

E [X] =
1

�

var [X] =
1� �
�2

Poisson distribution

p (x) = Pr (X = x) =
�x

x!
exp (��) ; x = 0; 1; 2; :::; � > 0

E [X] = �

var [X] = �

7.7 Means and Variances for some Continuous Dis-
tributions

The following results are stated without proof. For the interested reader,
proofs are available on most texts

7.7.1 Uniform Distribution

f (x) =
1

b� a; a < x < b

E [X] =
b+ a

2

var [X] =
1

12
(b� a)2

7.7.2 Exponential distribution

f(x) =
1

�
exp

�
�x
�

�
; x > 0; � > 0

E [X] = �

var [X] = �2
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7.7.3 Gamma Distribution

The Gamma function is de�ned as � (x) =
R1
0 tx�1 exp (�t) dt; with the

property that � (x) = (x� 1) � (x� 2), so that for any positive integer, a;
we have � (a) = (a� 1)! = (a � 1) (a� 2) :::2:1: The density of a Gamma
random variable is

f(x) =
x��1

��� (�)
exp

�
�x
�

�
; x > 0; � > 0; � > 0

E [X] = ��

var [X] = ��2:

With � = 1; we get back to the Exponential distribution.

7.7.4 Chi-squared Distribution

f(x) =
x(v�2)=2

2v=2� (v=2)
exp

�
�x
2

�
; x > 0; v > 0

E [X] = v

var [X] = 2v:

where v is called the shape parameter of more commonly the �degrees of
freedom�. Note that a Gamma distribution with � = v=2 and � = 2 is a
Chi-squared distribution. If a random variable, X; has such a density we
usually write that X � �2v:

7.7.5 The Normal distribution

If Z � N(0; 1), then it can be shown that E[Z] = 0 and var[Z] = 1: Using
this result and the fact that if X = �Z + �, then X � N(�; �2); it follows
that

E[X] = E[�Z + �] = �E[Z] + � = �

and
var[X] = var [�Z + �] = �2var[Z] = �2:

Hence we often say that �X is normally distributed with mean � and
variance �2�, rather than location � and scale �:

Finally, it can be shown that the square of a standard normal random
variable is a chi-squared random variable with v = 1 degree of freedom as
follows:

Proposition 1 Let Z be a standard normal random variable with distri-
bution function � (z) ; then X = Z2 has a chi-squared distribution with 1
degree of freedom: X � �21:
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Proof. Let F (x) = Pr (X � x) ; x > 0; be the distribution function of X; so
that it�s density is given by f(x) = dF (x)=dx: We �rst �nd F (x); and then
di¤erentiate this to get f(x): Thus, since X = Z2; we have

F (x) = Pr
�
Z2 � x

�
= Pr

�
�
p
x � Z �

p
x
�

= �
�p
x
�
� �

�
�
p
x
�

= 2�
�p
x
�
� 1

and di¤erentiating yields (where � (x) = d� (x) =dx; the standard normal
density)

f(x) = x�1=2�(
p
x)

=
x�1=2

21=2
p
�
exp

�
�x
2

�

and this is the density of a �21 random variable, noting that � (1=2) =
p
�:

7.8 Using EXCEL to create random numbers

Here, we illustrate how to obtain 100 typical observations from a N (4; 16)
distribution.

To do this, select Data Analysis from the Tools menu, then select
Random Number Generator from the Data Analsis Dialogue Box

Data Analysis Dialogue box

Choose the distribution from the Random Number Generation Dia-
logue Box
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Random Number Generator Dialogue Box

(in this case Normal) then choose the number of (random) variables, num-
ber of random numbers (observations) for each variable, and parameters for
the distribution which will be used to generate the random numbers. In
the following example, we will generate 100 random numbers for a single
random variable which has a normal distribution with parameters � = 2
(mean) and � = 4 (standard deviation). If you select the cell of the �rst
number in the Output Range (here $A$1) then the 100 random numbers
will be placed in cells A1:A100. You can leave the Random Seed �eld
blank, or use you registration number.

Setting the options

The e¤ect of this is to place 100 typical observations, from a N (2; 16) dis-
tribution in the cells A1:A100.



90 CHAPTER 7. MOMENTS AND EXPECTATION

7.9 Exercise 4

1. Find the number z0 such that if Z � N(0; 1)

(a) Pr(Z � z0) = 0:05
(b) Pr(Z < �z0) = 0:025
(c) Pr(�z0 < Z � z0) = 0:95

and check your answers using EXCEL.

2. If X � N(4; 0:16) evaluate

(a) Pr(X � 4:2)
(b) Pr(3:9 < X � 4:3)
(c) Pr ((X � 3:8) [ (X � 4:2))

and check your answers using EXCEL. (Note for part (c), de�ne the
�events�A = (X � 3:8) and B = (X � 4:2) and calculate Pr (A [B) :

3. Suppose that X is a Binomial random variable with parameters n = 3;
� = 0:5; show by direct calculation that E [X] = 1:5 and var [X] =
0:75:

4. The continuous random variable X has probability density function
given by

f(x) =

�
0:1 + kx; 0 � x � 5;

0; otherwise:

(a) Find the value of the constant, k; which ensures that this is a
proper density function.

(b) Evaluate E[X] and var[X]:

5. Use the random number generator in EXCEL to obtain 100 observa-
tions from a N (2; 1) distribution. When doing so, enter the last four
digits from your registration number in the Random Seed �eld.

Use EXCEL to calculate the following:

(a) the simple average and variance of these 100 observations

(b) the proportion of observations which are less than 1:

Now compare these with

(a) the theoretical mean and variance of a N (2; 1) distribution
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(b) the probability that a random variable, with a N (2; 1) distribu-
tion, is less than 1:

What do you think would might happen to these comparisons if you
were to generate 1000 obervations, rather than just 100?
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Part II

Statistical Inference
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Chapter 8

JOINT PROBABILITY
DISTRIBUTIONS

The objective of statistics is to learn about population characteristics: this
was �rst mentioned in Section 1. An EXPERIMENT is then any process
which generates data. It is easy to imagine circumstances where an exper-
iment generates two pieces of information, for example the weekly income
of husbands and the weekly income of wives in a particular population of
husbands and wives. One possible use of such data is to investigate the
relationship between the observed values of the two variables. Section 2
discussed the use of correlation and regression to summarise the extent and
nature of any linear relationship between these observed values. It has to
be said that the discussion of relationships between variables in this section
does but scratch the surface of a very large topic. Subsequent courses in
Econometrics take the analysis of relationships between two or more vari-
ables much further.

If these two pieces of information generated by the experiment are con-
sidered to be the values of two random variables de�ned on the SAMPLE
SPACE of an experiment (cf. Section 3), then the discussion of random
variables and probability distributions in Sections 5 and 6 needs to be ex-
tended.

8.1 Joint Probability Distributions

LetX and Y be the two random variables: for simplicity, they are considered
to be discrete random variables. The outcome of the experiment is a pair of
values (x; y) : The probability of this outcome is a joint probability which
can be denoted

Pr (X = x \ Y = y) ;

95
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emphasising the analogy with the probability of a joint event Pr (A \B),
or, more usually, by

Pr (X = x; Y = y) :

� The collection of these probabilities, for all possible combinations of x
and y; is the joint probability distribution of X and Y; denoted

p (x; y) = Pr (X = x; Y = y) :

� The Axioms of Probability in Section 3.2 carry over to imply

0 6 p (x; y) 6 1;X
x

X
y

p (x; y) = 1;

� where the sum is over all (x; y) values.

8.1.1 Examples

Example 2 Let H and W be the random variables representing the popula-
tion of weekly incomes of husbands and wives, respectively, in some country.
There are only three possible weekly incomes, £ 0, £ 100 or £ 200. The joint
probability distribution of H and W is represented as a table:

Values of H :
Probabilities 0 1 2

Values of W : 0 0:05 0:15 0:10
1 0:10 0:10 0:30
2 0:05 0:05 0:10

Then we can read o¤, for example, that

Pr (H = 0;W = 0) = 0:05;

or that in this population, 5% of husbands and wives have each a zero weekly
income.

In this example, the nature of the experiment underlying the population
data is not explicitly stated. However, in the next example, the experiment
is described, the random variables de�ned in relation to the experiment, and
their probability distribution deduced directly.

Example 3 Consider the following simple version of a lottery. Players in
the lottery choose one number between 1 and 5, whilst a machine selects
the lottery winners by randomly selecting one of �ve balls (numbered 1 to
5). Any player whose chosen number coincides with the number on the ball
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is a winner. Whilst the machine selects one ball at random (so that each
ball has an 0:2 chance of selection), players of the lottery have �lucky�and
�unlucky� numbers, with the probabilities of choosing each speci�c number
as follows:

Number chosen by player Probability of being chosen
1 0:40
2 0:20
3 0:05
4 0:10
5 0:25

1:0

Let X denote the number chosen by a player and Y the number chosen by
the machine. If they are assumed to be independent events, then for each
possible value of X and Y , we will have

Pr (X \ Y ) = Pr (X) Pr (Y ) :

The table above gives the probabilities for X; and Pr (Y ) = 0:2; so that a
table can be drawn up displaying the joint distribution p (x; y) :

Probabilities Y :
X : Selected by machine

Chosen by player 1 2 3 4 5 Row Total
1 0:08 0:08 0:08 0:08 0:08 0:40
2 0:04 0:04 0:04 0:04 0:04 0:20
3 0:01 0:01 0:01 0:01 0:01 0:05
4 0:02 0:02 0:02 0:02 0:02 0:10
5 0:05 0:05 0:05 0:05 0:05 0:25

Column Total 0:20 0:20 0:20 0:20 0:20 1:00

The general question of independence in joint probability distributions will
be discussed later in the section.

8.2 Marginal Probabilities

Given a joint probability distribution

p (x; y) = Pr (X = x; Y = y)

for the random variables X and Y; a probability of the form Pr (X = x) or
Pr (Y = y) is called a marginal probability.

The collection of these probabilities for all values of X is the marginal
probability distribution for X;

pX (x) = Pr (X = x) :
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If it is clear from the context, write pX (x) as p (x) :
Suppose that Y takes on values 0; 1; 2: Then

Pr (X = x) = Pr (X = x; Y = 0) + Pr (X = x; Y = 1) + Pr (X = x; Y = 2) ;

the sum of all the joint probabilities favourable to X = x: So, marginal
probability distributions are found by summing over all the values of the
other variable:

pX (x) =
X
y

p (x; y) ; pY (y) =
X
x

p (x; y) :

This can be illustrated using Example 1 of Section 8.1.1 again:

Pr (W = 0) = Pr (W = 0;H = 0) + Pr (W = 0;H = 1) + Pr (W = 0;H = 2)

= 0:05 + 0:15 + 0:10

= 0:30:

There is a simple recipe for �nding the marginal distributions in the table
of joint probabilities: �nd the row sums and column sums. From Example
1 in Section 8.1.1,

Values of H : Row Sums
Probabilities 0 1 2 pW (w)

Values of W : 0 0:05 0:15 0:10 0:30
1 0:10 0:10 0:30 0:50
2 0:05 0:05 0:10 0:20

Column Sums: pH (h) 0:20 0:30 0:50 1:00

from which the marginal distributions should be written out explicitly as

Values of W pW (w) Values of H pH (h)

0 0:3 0 0:2
1 0:5 1 0:3
2 0:2 2 0:5

1:0 1:0

By calculation, we can �nd the expected values and variances of W and
H as

E [W ] = 0:9; var [W ] = 0:49;

E [H] = 1:3; var [H] = 0:61:

Notice that a marginal probability distribution has to satisfy the usual
properties expected of a probability distribution (for a discrete random vari-
able):

0 � pX (x) � 1;
X
x

pX (x) = 1;

0 � pY (y) � 1;
X
y

pY (y) = 1:
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8.3 Functions of Two Random Variables

Given the experiment of Example 1 of section 8.1.1, one can imagine de�n-
ing further random variables on the sample space of this experiment. One
example is the random variable T representing total household income:

T = H +W:

This new random variable is a (linear) function of H and W; and we can
deduce the probability distribution of T from the joint distribution of H and
W: For example,

Pr (T = 0) = Pr (H = 0;W = 0) ;

Pr (T = 1) = Pr (H = 0;W = 1) + Pr(H = 1;W = 0):

The complete probability distribution of T is

Values of T Pr (T = t) t� Pr (T = t)
0 0:05 0
1 0:25 0:25
2 0:25 0:5
3 0:35 1:05
4 0:10 0:40

1:00 2:20

from which we note that E [T ] = 2:2; indicating that the population mean
income for married couples in the speci�c country is £ 220.

Now we consider a more formal approach. Let X and Y be two discrete
random variables with joint probability distribution p (x; y) : Let V be a
random variable de�ned as a function of X and Y :

V = g (X;Y ) :

Here, g (X;Y ) is not necessarily a linear function: it could be any function
of two variables. In principle, we can deduce the probability distribution of
V from p (x; y) and thus deduce the mean of V; E [V ] ; just as we did for T
in Example 1.

However, there is a second method that works directly with the joint
probability distribution p (x; y) : the expected value of V is

E [V ] = E [g (X;Y )] =
X
x

X
y

g (x; y) p (x; y) :

The point about this approach is that it avoids the calculation of the prob-
ability distribution of V:
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To apply this argument to �nd E [T ] in Example 1, it is helpful to modify
the table of joint probabilities to display the value of T associated with each
pair of values for H and W :

h
(t) 0 1 2

w 0 (0) 0:05 (1) 0:15 (2) 0:10
1 (1) 0:10 (2) 0:10 (3) 0:30
2 (2) 0:05 (3) 0:05 (4) 0:10

:

Then, the double summation required for the calculation of E [T ] can be
performed along each row in turn:

E [T ] = (0)� 0:05 + (1) (0:15) + (2)� 0:10
+ (1)� 0:10 + (2) (0:10) + (3)� 0:30
+ (2)� 0:05 + (3) (0:05) + (4)� 0:10

= 2:20:

So, the recipe is to multiply, for each cell, the implied value of T in that by
the probability in that cell, and add up the calculated values over all the
cells.

8.4 Independence, Covariance and Correlation

8.4.1 Independence

If the random variables X and Y have a joint probability distribution

p (x; y) = Pr (X = x; Y = y) ;

then it is possible that for some combinations of x and y; the events (X = x) and
(Y = y) are independent events:

Pr (X = x; Y = y) = Pr (X = x) Pr (Y = y) ;

or, using the notation of joint and marginal probability distributions,

p (x; y) = pX (x) pY (y) :

If this relationship holds for all values of x and y; the random variables X
and Y are said to be independent:

� X and Y are independent random variables if and only if

p (x; y) = pX (x) pY (y) for all x; y:
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Each joint probability is the product of the corresponding marginal
probabilities. Independence also means that Pr (Y = y) would not be
a¤ected by knowing that X = x : knowing the value taken on by one
random variable does not a¤ect the probabilities of the outcomes of
the other random variable. A corollary of this is that if two random
variables X and Y are independent, then there can be no relationship
of any kind, linear or non-linear, between them.

� The joint probabilities and marginal probabilities for Example 1 in
section 8.1.1 are

Values of H : Row Sums
Probabilities 0 1 2 pW (w)

Values of W : 0 0:05 0:15 0:10 0:30
1 0:10 0:10 0:30 0:50
2 0:05 0:05 0:10 0:20

Column Sums: pH (h) 0:20 0:30 0:50 1:00

Here p (0; 0) = 0:05; whilst pW (0) = 0:30; pH (0) = 0:20; with

p (0; 0) 6= pW (0) pH (0) :

So, H and W cannot be independent.

For X and Y to be independent, p (x; y) = pX (x) pY (y) has to hold for
all x; y: Finding one pair of values x; y for which this fails is su¢ cient to
conclude that X and Y are not independent. However, one may also have
to check every possible pair of values to con�rm independence: think what
would be required in Example 2 of Section 8.1.1, if one did not know that the
joint probability distribution had been constructed using an independence
property.

8.4.2 Covariance

A popular measure of association for random variables X and Y is the (pop-
ulation) correlation coe¢ cient. It is the population characteristic analogous
to the (sample) correlation coe¢ cient introduced in Section 2.3.3. It will be
seen that this (population) correlation coe¢ cient is really only a measure of
strength of any linear relationship between the random variables.

The �rst step is to de�ne the (population) covariance as a characteristic
of the joint probability distribution of X and Y: Let

E [X] = �X ; E [Y ] = �Y :

� the (population) covariance is de�ned as

cov [X;Y ] = E [(X � �X) (Y � �Y )]
= �XY :
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Notice that by this de�nition, cov [X;Y ] = cov [Y;X] :

� There are a number of alternative expressions for the covariance. The
�rst follows from seeing

(X � �X) (Y � �Y )

as a function g (X;Y ) of X and Y :

cov [X;Y ] =
X
x

X
y

(x� �X) (y � �Y ) p (x; y)

We can see from this expression that if enough (x; y) pairs have x��X
and y � �Y values with the same sign, cov [X;Y ] > 0; so that large
(small) values of x � �X tend to occur with large (small) values of
y��Y : Similarly, if enough (x; y) pairs have x��X and y��Y values
with di¤erent signs, cov [X;Y ] < 0: Here, large (small) values of x��X
tend to occur with small (large) values of y � �Y :

� cov [X;Y ] > 0 gives a �positive�relationship betweenX and Y; cov [X;Y ] <
0 a �negative�relationship.

� There is a shorthand calculation for covariance, analogous to that given
for the variance in Section 8.5:

cov [X;Y ] = E [(X � �X) (Y � �Y )]
= E [XY �X�Y � �XY + �X�Y ]
= E [XY ]� E [X]�Y � �XE [Y ] + �X�Y
= E [XY ]� �X�Y � �X�Y + �X�Y
= E [XY ]� �X�Y :

Here, the linear function rule of Section 8.3 has been used to make the
expected value of a sum of terms equal to the sum of expected values,
and then to make, for example,

E [X�Y ] = E [X]�Y :

Even with this shorthand method, the calculation of the covariance is
rather tedious. To calculate cov [W;H] in Example 1, the best approach is
to imitate the way in which E [T ] was calculated in Section 8.3. Rather than
display the values of T; here we display the values of W �H in order to �rst
calculate E [WH] :

h
(w � h) 0 1 2

w 0 (0) 0:05 (0) 0:15 (0) 0:10
1 (0) 0:10 (1) 0:10 (2) 0:30
2 (0) 0:05 (2) 0:05 (4) 0:10

:
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Using the same strategy of multiplication within cells, and adding up along
each row in turn, we �nd

E [WH] = (0)� 0:05 + (0)� 0:15 + (0)� 0:10
+ (0)� 0:10 + (1)� 0:10 + (2)� 0:30
+ (0)� 0:05 + (2)� 0:05 + (4)� 0:10

= 0:1 + 0:6 + 0:1 + 0:4

= 1:2:

We found in Section 8.2 that E [W ] = 0:9; E [H] = 1:3; so that

cov [W;H] = E [WH]� E [W ]E [H]
= 1:2� (0:9) (1:3)
= 0:03:

Strength of Association and Units of Measurement

How does covariance measure the strength of a relationship between X and
Y ? Not well is the answer, because the value of the covariance is dependent
on the units of measurement. Suppose in Example 1 of section 8.1.1 the
units of measurement of W are changed to pounds rather than the original
hundreds of pounds. Let V represent W in the new units:

V = 100W :

whereW had values 0; 1; 2, V now has values 0; 100; 200: Notice from section
8 that

E [V ] = �V = 100E [W ] = 100 (0:9) = 90;

and in turn

V � �V = 100W � 100�W = 100 (W � �W ) :

Then,

cov [V;H] = E [(V � �V ) (H � �H)]
= E [100 (W � �W ) (H � �H)]
= 100E [(W � �W ) (H � �H)]
= 100 cov [W;H]

= 3:

Simply by changing units of measurement, we can make the strength of the
association between wife�s income and husband�s income bigger. If in addi-
tion, we also measured husband�s income in pounds rather than hundreds of
pounds, the covariance would increase to 300 - even better, it seems! This is
easily con�rmed by replacing (H � �H) by 100 (H � �H) in the covariance
calculation.
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Correlation

This cannot be sensible: what is required is a measure of the strength of
association which is invariant to changes in units of measurement. Gener-
alising what we have just seen, if the units of measurement of two random
variables X and Y are changed to produce new random variables �X and
�Y; then the covariance in the new units of measurement is related to the
covariance in the original units of measurement by

cov [�X; �Y ] = �� cov [X;Y ] :

What are the variances of �X and �Y in terms of var [X] and var [Y ]? By
Section 8.3, they are

var [�X] = �2 var [X] ; var [�Y ] = �2 var [Y ] :

The (population) correlation coe¢ cient between X and Y is de�ned
by

�XY =
cov [X;Y ]p
var [X] var [Y ]

:

This is also the correlation between �X and �Y :

��X;�Y =
cov [�X; �Y ]p
var [�X] var [�Y ]

=
�� cov [X;Y ]q

�2�2 var [X] var [Y ]

= �XY ;

so that the correlation coe¢ cient does not depend on the units of measure-
ment.

In Section 8.2, we found for Example 1 of section 8.1.1 that var [W ] =
0:49; var [H] = 0:61; so that

�WH =
0:03p

(0:49) (0:61)

= 0:0549:

Is this indicative of a strong relationship? Just like the sample correlation
coe¢ cient of Section 2.3.3, it can be shown that

� the correlation coe¢ cient �XY always satis�es �1 6 �XY 6 1:

� The closer � is to 1 or �1; the stronger the relationship.
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So, �WH = 0:0549 is indicative of a very weak relationship.
It can shown that if X and Y are exactly linearly related by

Y = a+ bX with b > 0

then �XY = 1 - that is, X and Y are perfectly correlated. X and Y are also
perfectly correlated if they are exactly linearly related by

Y = a+ bX with b < 0;

but �XY = �1: Thus,

� correlation measures only the strength of a linear relationship between
X and Y ;

� correlation does not imply causation.

Other notations for the correlation coe¢ cient are

�XY =
�XY
�X�Y

which uses covariance and standard deviation notation, and

�XY =
E [(X � �X) (Y � �Y )]r

E
h
(X � �X)2

i
E
h
(Y � �Y )2

i :

Correlation, Covariance and Independence

Non-zero correlation and covariance between random variables X and Y
indicate some linear association between them, whilst (Section 8.4.1) inde-
pendence of X and Y implies no relationship or association of any kind
between them. So, it is not surprising that

� independence of X and Y implies zero covariance: cov[X;Y ] = 0;

� independence of X and Y implies zero correlation: �XY = 0:

The converse is not true, in general:

� zero covariance or correlation does not imply independence.

The reason is that there may be a relationship between X and Y which
is not linear.
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8.5 Conditional Distributions

In Sections 8.1 and 8.2, we looked at the jointe and marginal distributions
for a pair of discrete random variables. Continuing the previous discussion
of relationships between variables, we are often interested in econometrics
in how random variable X a¤ects random variable Y . This information is
contained in something called the conditional distribution of �Y given X�.
For discrete random variables, X and Y; this distribution is de�ned by the
following probabilities

pY jX (yjx) = Pr (Y = yjX = x)

=
p (x; y)

pX (x)
;

where reads as �the probability that Y takes the value y given that (con-
ditional on) X takes the value x�. As with the discussion of conditional
probability in Chapter 3, these conditional probabilities are de�ned on a re-
stricted sample space of X = x (hence the rescaling by pX (x)) and they are
calculated on a sequence on restricted sample spaces; one for each possible
value of x (in the discrete case).

As an illustration of the calculations, consider again Example 8.1.1 and
the construction of the conditional distribution of W given H for which we
had the following joint distribution:

Values of H :
Probabilities 0 1 2

Values of W : 0 0:05 0:15 0:10
1 0:10 0:10 0:30
2 0:05 0:05 0:10

We consider, in turn, conditional probablities for the values ofW given, �rst
H = 0; then H = 1 and �nally H = 2: Intuitively, think of the probabilities
in the cells as indicating sub-areas of the entire sample space, with the latter
having and area of 1 and the former (therefore) summing to 1:With this in-
terpretation, the restrictionH = 0 �occupies�20% of the entire sample space
(recall the marginal probability, Pr (H = 0) ; from Section 8.2). The three
cells corresponding to H = 0 now correspond to the restricted sample space
of H = 0; and the outcome W = 0 takes up 0:05=0:2 = 0:25 of this restricte
sample space; thus Pr (W = 0jH = 0) = Pr (W = 0:H = 0) =Pr(H = 0) =
0:25: Similarly, Pr (W = 1jH = 0) = 0:10=0:2 = 0:5 and Pr (W = 2jH = 0) =
0:05=0:2 = 0:25: Notice that

P2
j=0 Pr (W = jjH = 0) = 1; as it should do

for the restricted sample space of H = 0: For all possible restrictions im-
posed by H we get the following conditional distributions for W (we get
three conditional distributions, one for each of h = 0; h = 1, h = 2) :
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Values of H : Pr (W = wjH = h)
Probabilities 0 1 2 h = 0 h = 1 h = 2

Values of W : 0 0:05 0:15 0:10 1=4 1=2 1=5
1 0:10 0:10 0:30 1=2 1=3 3=5
2 0:05 0:05 0:10 1=4 1=6 1=5

Notice how the probabilities for particular values of W change accord-
ing to the restriction imposed by H; for example, Pr (W = 0jH = 0) 6=
Pr (W = 0jH = 1) ; say. Thus knowledge of, or information about,H changes
probabilities concerning W: Because of this, and as ascertained previously,
W and H are NOT independent.

In general,.X and Y are independent, if and only if knowledge of the
value taken by X does not tell us anything about the probability that Y
takes any particular value. Indeed, from the de�nition of pY jX (yjx) ; we see
that X and Y are independent if and only if pY jX (yjx) = pY (y) ; for all
x; y:

There is a similar treatment for conditional distributions for continuous
random variables.

8.5.1 Conditional Expectation

While correlation is a useful summary of the relationship between two ran-
dom variables, in econometrics we often want to go further and explain one
random variable Y as a function of some other random variable X. One
way of doing this is to look at the properties of the distribution of Y con-
ditional on X, as intruduced above. In general these properties, such as
expectation and variance, will depend on the value of X, thus we can think
of them as being functions of X. The conditional expectation of Y is de-
noted E(Y jX = x) and tells us the expectation of Y given that X has taken
the particular value x. Since this will vary with the particular value taken
by X we can think of E(Y jX = x) = m(x); as a function of x.

As an example think of the population of all working individuals and
let X be years of education and Y be hourly wages. E(Y jX = 12) is the
expected hourly wage for all those people who have 12 years of education
while E(Y jX = 16) tells us the expected hourly wage for all those who have
16 years of education. Tracing out the values of E(Y jX = x) for all values
of X tells us a lot about how education and wages are related.

In econometrics we typically summarise the relationship represented by
E(Y jX) = m(X) in the form of a simple function. For example we could
use a simple linear function:

E(WAGEjEDUC) = 1:05 + 0:45 � EDUC
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or a non-linear function:

E(QUANTITY jPRICE) = 10=PRICE;

with the latter example demonstrating the de�ciencies of correlation as a
measure of association (since it con�nes itself to the consideration of linear
relationships only).

Properties of Conditional Expectation

The following properties hold for both discrete and continuous random vari-
ables.

� E[c(X)jX] = c(X) for any function c(X).
Functions of X behave as constants when we compute expectations
conditional on X. (If we know the value of X then we know the value
of c(X) so this is e¤ectively a constant.)

For functions a(X) and b(X)

� E[a(X)Y + b(X)jX] = a(X)E(Y jX) + b(X)
This is an extension of the previous rule�s logic and says that since we
are conditioning on X, we can treat X, and any function of X, as a
constant when we take the expectation.

� If X and Y are independent, then E(Y jX) = E(Y ).
This follows immediately from the earlier discussion of conditional
probability distributions. If the two random variables are independent
then knowledge of the value of X should not change our view of the
likelihood of any value of Y . It should therefore not change our view
of the expected value of Y .
A special case is where U and X are independent and E(U) = 0. It is
then clear that E(U jX) = 0.

� E[E(Y jX)] = E(Y )
This result is known as the �iterative expectations� rule. We can
think of E(Y jX) as being a function of X. Since X is a random
variable then E(Y jX) = m(X) is a random variable and it makes
sense to think about its distribution and hence its expected value.
Think about the following example: suppose E(WAGEjEDUC) =
4 + 0:6 � EDUC. Suppose E(EDUC) = 11:5. Then according to the
iterative expectation rule

E(WAGE) = E(4 + 0:6 � EDUC) = 4 + 0:6(11:5) = 10:9:

� If E(Y jX) = E(Y ) then Cov(X;Y ) = 0.
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The last two properties have immediate applications in econometric mod-
elling: if U and X are random variables with E(U jX) = 0, then E(U) = 0
and Cov(U;X) = 0.

Finally, E(Y jX) is often called the �regression� of Y on X. We can
always write

Y = E(Y jX) + U

where, by the above properties, E(U jX) = 0. Now consider E(U2jX),
which is

E
�
U2jX

�
= E

h
(Y � E (Y jX))2 jX

i
= var (Y jX)

the conditional variance of Y given X:
In general, it can be shown that

var (Y ) = E [var (Y jX)] + var [E (Y jX)] :
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Chapter 9

LINEAR COMBINATIONS
OF RANDOM VARIABLES

In this section, some properties of linear functions of random variables X
and Y are considered. In Section 8.3, a new random variable V was de�ned
as a function of X and Y;

V = g (X;Y ) ;

with no restriction on the nature of the function or transformation g: In this
section, the function g is restricted to be a linear function of X and Y :

V = aX + bY + c;

where a; b and c are constants. V is also called a linear combination of
X and Y:

The properties developed in this section are speci�c to linear functions:
they do not hold in general for nonlinear functions or transformations.

9.1 The Expected Value of a Linear Combination

This result is easy to remember: it amounts to saying that

the expected value of a linear combination is the linear combina-
tion of the expected values.
Even more simply, the expected value of a sum is a sum of ex-
pected values.

If V = aX + bY + c; where a; b; c are constants, then

E [V ] = E [aX + bY + c] = aE [X] + bE [Y ] + c:

This result is a natural generalisation of that given in Section 8.3.

111
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� Proof (discrete random variables case only). Using the result in Sec-
tion 8.3,

E [V ] = E [g (X;Y )]

= E [aX + bY + c]

=
X
x

X
y

(ax+ by + c) p (x; y) :

From this point on, the proof just involves manipulation of the sum-
mation signs:X
x

X
y

(ax+ by + c) p (x; y) = a
X
x

X
y

xp (x; y) + b
X
x

X
y

yp (x; y) + c
X
x

X
y

p (x; y)

= a
X
x

"
x

 X
y

p (x; y)

!#
+ b

X
y

"
y

 X
x

p (x; y)

!#
+ c

= a
X
x

[xpX (x)] + b
X
y

[ypY (y)] + c

= aE [X] + bE [Y ] + c:

Notice the steps used:

�
P
y
xp (x; y) = x

P
y
p (x; y) = xpX (x) ;

P
x
yp (x; y) = y

P
x
p (x; y) =

xpX (x) ;

� because x is constant with respect to y summation and y is constant
with respect to x summation;

�
P
x

P
y
p (x; y) = 1;

� the de�nitions of marginal distributions from Section 8.2;

� the de�nitions of expected value for discrete random variables.

Notice that nothing need be known about the joint probability distri-
bution p (x; y) of X and Y: The result is also valid for continuous random
variables, nothing need be known about p (x; y) :

9.1.1 Examples

1. Example 1 from Section 8.1.1: we de�ned

T =W +H;
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and had E [W ] = 1:3; E [H] = 0:9; giving

E [T ] = E [W ] + E [H]

= 2:2

con�rming the result obtained earlier.

2. Suppose that the random variables X and Y have E [X] = 0:5 and
E [Y ] = 3:5; and let

V = 5X � Y:
Then,

E [V ] = 5E [X]� E [Y ]
= (5) (0:5)� 3:5
= �1:

9.1.2 Generalisation

Let X1; :::; Xn be random variables and a1; ::::; an; c be constants, and de�ne
the random variable W by

W = a1X1 + :::+ anXn + c

=
nX
i=1

aiXi + c:

Then,

E [W ] =

nX
i=1

aiE [Xi] + c:

The proof uses the linear combination result for two variables repeat-
edly:

E [W ] = a1E [X1] + E [a2X2 + :::+ anXn + c]

= a1E [X1] + a2E [X2] + E [a3X3 + :::+ anXn + c]

= :::

= a1E [X1] + a2E [X2] + :::+ anE [Xn] + c:

Example: let E [X1] = 2; E [X2] = �1; E [X3] = 3; W = 2X1 + 5X2 �
3X3 + 4 and then

E [W ] = E [2X1 + 5X2 � 3X3 + 4]
= 2E [X1] + 5E [X2]� 3E [X3] + 4
= (2) (2) + (5) (�1)� (3) (3) + 4
= �6:
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9.2 The Variance of a Linear Combination

9.2.1 Two Variable Case

Let V be the random variable de�ned in Section 9.1:

V = aX + bY + c:

What is var [V ]? To �nd this, it is helpful to use notation that will simplify
the proof. By de�nition,

var [V ] = E
h
(V � E [V ])2

i
:

Put
~V = V � E [V ]

so that
var [V ] = E

h
~V 2
i
:

We saw that
E [V ] = aE [X] + bE [Y ] + c;

so that

~V = (aX + bY + c)� (aE [X] + bE [Y ] + c)
= a (X � E [X]) + b (Y � E [Y ])
= a ~X + b ~Y

and then

var [V ] = E
h
~V 2
i
= E

��
a ~X + b ~Y

�2�
:

Notice that this does not depend on the constant c:
To make further progress, recall that in the current notation,

var [X] = E
h
~X2
i
; var [Y ] = E

h
~Y 2
i
;

cov [X;Y ] = E [(X � E [X]) (Y � E [Y ])]

= E
h
~X ~Y
i
:

Then,

var [V ] = E

��
a ~X + b ~Y

�2�
= E

h
a2 ~X2 + 2ab ~X ~Y + b2 ~Y 2

i
= a2E

h
~X2
i
+ 2abE

h
~X ~Y
i
+ b2E

h
~Y 2
i

= a2 var [X] + 2ab cov [X;Y ] + b2 var [Y ] ;

using the linear combination result for expected values.
Summarising,
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� if V = aX + bY + c; then

var [V ] = a2 var [X] + 2ab cov [X;Y ] + b2 var [Y ] :

� If X and Y are uncorrelated, so that cov [X;Y ] = 0;

var [V ] = a2 var [X] + b2 var [Y ] :

This special case can be nicely summarised as

the variance of a (weighted) sum is a (weighted) sum of variances.

Notice that the weights get squared, as is usual for variances.

� If X and Y are independent, the same result holds.

Examples

1. Suppose thatX and Y are independent random variables with var [X] =
0:25; var [Y ] = 2:5: If

V = X + Y;

then

var [V ] = var [X] + var [Y ]

= 0:25 + 2:5

= 2:75:

2. This uses Example 1 of Section 8.1.1, with random variables W and
H; and T de�ned by

T =W +H:

In Section 8.2, we found that var [W ] = 0:49; var [H] = 0:61; whilst in
Section 8.4.2 we found cov [W;H] = 0:03: Then,

var [T ] = var [W +H]

= var [W ] + 2 cov [W;H] + var [H]

(since this is a case with a = b = 1): So,

var [T ] = 0:49 + (2) (0:03) + 0:61 = 1:16:

3. For the same joint distribution, the di¤erence between the income of
husbands and wives is

D = H �W:
This case has a = 1 and b = �1; so that

var [D] = (1)2 var [H] + 2 (1) (�1) cov [W;H] + (�1)2 var [W ]
= 0:61� (2) (0:03) + 0:49
= 1:04:
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Generalisation

To extend the result to the case of a linear combination of n random vari-
ables X1; :::; Xn is messy because of the large number of covariance terms
involved. So, we simplify by supposing that X1; :::; Xn are uncorrelated ran-
dom variables, with all covariances equal to zero: cov [Xi; Xj ] = 0; i 6= j:
Then,

� for X1; :::; Xn uncorrelated,

var

"
nX
i=1

aiXi

#
=

nX
i=1

a2i var [Xi] :

� This also applies when X1; :::; Xn are independent random variables.

Standard Deviations

None of these results apply directly to standard deviations. Consider the
simple case where X and Y are independent random variables and

W = X + Y:

Then,

var [W ] = �2W

= var [X] + var [Y ]

= �2X + �
2
Y

and then
�W =

q
�2X + �

2
Y :

In general it is true that
�W 6= �X + �Y :

To illustrate, if X1; X2 and X3 are independent random variables with
var [X1] = 3; var [X2] = 1 and var [X3] = 5; and if

P = 2X1 + 5X2 � 3X3;

then

var [P ] = 22 var [X1] + 5
2 var [X2] + (�3)2 var [X3]

= (4) (3) + (25) (1) + (9) (5)

= 82;

�P =
p
82 = 9:06:
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9.3 Linear Combinations of Normal Random Vari-
ables

The results in this section so far relate to characteristics of the probability
distribution of a linear combination like

V = aX + bY;

not to the probability distribution itself: Indeed, part of the attraction of
these results is that they can be obtained without having to �nd the prob-
ability distribution of V:

However, if we knew that X and Y had normal distributions then it
would follow that V is also normally distributed. This innocuous sounding
result is EXTREMELY IMPORTANT! It is also rather unusual: there
are not many distributions for which this type of result holds.

More speci�cally,

� if X � N
�
�X ; �

2
X

�
and Y � N

�
�Y ; �

2
Y

�
and W = aX + bY + c; then

W � N
�
�W ; �

2
W

�
with

�W = a�X + b�Y + c;

�2W = a2�2X + 2ab�XY + b
2�2Y

Note that independence of X and Y has not been assumed.

� If X1; :::Xn are uncorrelated random variables with Xi � N
�
�i; �

2
i

�
and W =

nP
i=1
aiXi; where a1; :::; an are constants, then

W � N
 

nX
i=1

ai�i;
nX
i=1

a2i�
2
i

!
:

Of course, standard normal distribution tables can be used in the usual
way to compute probabilities of events involving W: This is illustrated in
the following

� Example. If X � N (20; 5) ; Y � N (30; 11) ; X and Y independent,
and

D = X � Y;

then
D � N (�10; 16)
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and

Pr (D > 0) = Pr

�
Z >

0� (�10)
4

�
= Pr (Z > 2:5)

= 0:00621;

where Z � N (0; 1) :

9.4 Exercise 5

1. Consider the joint probability distributions

Values of Y :
Probabilities �1 0 1

Values of X : �1 0:0 0:1 0:0
0 0:2 0:3 0:3
1 0:0 0:0 0:1

;

Values of Y :
Probabilities �1 0 1

Values of X : �1 0:02 0:10 0:08
0 0:06 0:30 0:24
1 0:02 0:10 0:08

:

In each case,

(a) �nd the marginal probability distributions of X and Y ;

(b) �nd out whether X and Y are independent.

2. You are an investment consultant employed by an investor who intends
to invest in the stock market or in a deposit account with a building
society. The percentage annual rate of return for the stock market
is denoted by the random variable S: For simplicity we assume that
this rate of return will be one of four values: -10%, 0%,10% or 20%.
The annual rate of interest on the deposit account (denoted R) will be
4%, 6% or 8%. From previous experience, you believe that the joint
probability distribution for these variables is:

Values of S :
Probabilities �10 0 10 20

Values of R : 4 0 0 0:1 0:1
6 0 0:1 0:3 0:1
8 0:1 0:1 0:1 0
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(a) i. Find the marginal probability distributions for R and S:
What is the overall probability that the rate of return for
the stock market will be positive? What is the probability
that the rate of return for the stock market will exceed that
from the building society deposit account?

ii. Calculate the mean and variance using each of these marginal
distributions. What does this information imply about the
relative merits of the two types of investment?

(b) Calculate the (population) covariance and (population) correla-
tion between R and S: How would you interpret the value of the
correlation?

(c) i. One proposal you make to the investor is to split her savings
equally between the stock market and the building society
account. Find (using any appropriate method) the mean and
variance of the random variable

A = 0:5R+ 0:5S:

ii. Why might the investor prefer the proposed new 50/50 strat-
egy to the simple strategies of investing all her money in the
building society or in the stock market?

3. The random variablesX and Y have �X = 10; �X = 3; �Y = �1; �Y =
4:

(a) Find the mean and standard deviation of V = X + Y when

i. X and Y are independent;
ii. �XY = �8:

(b) Find the mean and standard deviation of

W = 3X � 2Y + 8

when X and Y are independent.

4. In the manufacture of disposable syringes, the manufacturing process
produces cylinders of diameter X1 � N (20:2; 0:04) and plungers of
diameter X2 � N (19:7; 0:0225) :

(a) If the components are combined so that X1 is independent of X2;
what proportion of plungers will not �t?

(b) Suppose now that the components are not independently com-
bined, but that larger plungers tend to be combined with larger
cylinders, leading to cov [X1; X2] = 0:02: What proportion of
plungers will not �t now?
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9.5 Exercises in EXCEL

EXCEL can be used to perform the routine calculations involved in the
material of Sections 9 and 10. For example, summation in EXCEL can be
used to obtain the marginal probability distributions obtained in Section 9.
Similarly, the tedious calculations involved in obtaining the separate means,
variances, the covariance and the correlation from a given joint probability
distribution can be carried out in EXCEL. Note, however, that there are
no functions available within EXCEL speci�cally designed to compute the
expected value and standard deviation for a random variable.

EXCEL can be used to obtain probabilities for a Normal random vari-
able, as discussed in Section 8.10. Thus, having obtained the mean and
variance of a linear combination of normal random variables, the NOR-
MDIST function can be used to obtain probabilities for values of this linear
combination. This yields more accurate probabilities than those which can
be obtained using statistical tables.



Chapter 10

POPULATIONS, SAMPLES
& SAMPLING
DISTRIBUTIONS

10.1 Experiments and Populations

Section 1 provided some basic de�nitions and concepts of statistics - data,
experiment, sampling, population, sample, sample space and statis-
tic. In this section, the links from these ideas to probability distributions
and random variables are made explicit.

There are two aspects to the idea of an experiment. It is any process
which generates data, and, at least in some cases, generates a sample of data,
in which case, this is also considered to be sampling from a population. Here
the population is de�ned as the totality of items that we are interested in.
On the other hand, the sample space of the experiment lists all the possible
outcomes of the experiment. Much e¤ort was devoted in Sections 5 - 7 to
establishing the properties of random variables which can be de�ned on the
sample space of the experiment.

From this perspective, then, an experiment generates the values of a
random variable, and possibly even several random variables. The values
of a random variable are assumed to occur with a known probability for
a given experiment, and the collection of these probabilities constitute the
probability distribution of the random variable.

Pooling the two aspects, we see that data generated by experiments can
be considered both as values of a random variable and as a sample of data
from a population. More succinctly, we can argue that values that occur in
a population are generated by an experiment. Pursuing this argument one
stage further, we can conclude that values occurring in a population can be
considered as the values of a random variable.

This is the crucial idea, but it can be extended still further. The relative

121
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frequencies with which values occur in the population must equal the prob-
ability of these values as values of a random variable. So, we could argue
that a population is �equivalent�(in this sense) to a random variable. This
reasoning permits us to use the language of probability and probability dis-
tributions alongside that of populations and population relative frequencies.

10.1.1 Examples

1. The population of January examination results for ES1070 are the
values of some random variable.

2. The number of cars passing an observation point on the M60 in a short
interval of time is the value of some random variable.

3. Whether or not a household in the UK owns a DVD player is the value
of a random variable.

The skill of the statistician lies in deciding which is the appropriate ran-
dom variable to describe the underlying populations. This is not always easy,
and usually one tries to use a well known random variable and probability
distribution, at least as a �rst approximation. Hence the need to discuss
Binomial, Geometric, Poisson, Uniform, Exponential and Normal random
variables in this course.

10.2 Populations and random variables

The discussion above helps us to see why it is that the expected value,
E [X], of some random variable X is simultaneously

� the theoretical mean

� the mean of the probability distribution of X

� the population mean.

The same applies to the variance var [X] of X : it is

� the theoretical variance

� the variance of the probability distribution of X

� the population variance.

Population characteristics like mean and variance are usually called pop-
ulation parameters, but they are also characteristics of the probability dis-
tribution ofX: There are other sorts of parameters that we may be interested
in - for example, the population relative frequency � in Example 3 of section
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10.1.1. If we de�ne X to be a random variable taking on the value 1 if a
household owns a DVD player, and 0 otherwise, the population proportion
becomes the parameter of a probability distribution as � = Pr (X = 1) :

10.2.1 Objective of Statistics

As far as this course is concerned, the objective of statistics is to learn about
population characteristics or parameters. It is important to remember that
the values of these parameters are unknown to us, and generally, we will
never discover their values exactly. The idea is to get as close to the truth
as possible, even though the truth may never be revealed to us. All we can
do in practice is to make reasonable judgments based on the evidence (data)
and analysis of that data: this process is called statistical inference. So,

� the objective of statistics is statistical inference on (unknown) popu-
lation parameters.

10.3 Samples and Sampling

Put simply, we use a sample of data from a population to draw inferences
about the unknown population parameters. However, the argument in Sec-
tion 10.1 makes it clear that this idea of sampling from a population is
equivalent to sampling from the probability distribution of a ran-
dom variable.

It is important to note that the way in which a sample is obtained
will in�uence inference about population parameters. Indeed, badly drawn
samples will bias such inference.

10.3.1 Example

Suppose that an investigator is interested in the amount of debt held by
students when they graduate from a UK university. If the investigator sam-
ples only graduating students from the University of Manchester, there can
be no presumption that the sample is representative of all graduating UK
students.

10.3.2 Sampling from a population

It is easier to start by discussing appropriate sampling methods from a pop-
ulation, and then discuss the equivalence with sampling from probability
distributions. Our objective of avoiding biased inferences is generally con-
sidered to be met if the sampling procedure satis�es two conditions:

1. Each element of the population has an equal chance of being drawn
for inclusion in the sample.
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2. Each draw from the population is independent of the preceding and
succeeding draws.

A sample meeting these conditions is called a simple random sample,
although frequently this is abbreviated to random sample.

How can these conditions be physically realised? Drawing names from a
hat is one possible method, although not very practical for large populations.
The electronic machine used to make draws for the National Lottery is
apparently considered a fair way of drawing 6 or 7 numbers from 50. The use
of computers to draw �pseudo-random�numbers is also a standard method.

There are some technical complications associated with this description
of random sampling. One is that with a population of �nite size, the con-
ditions can be met only if an item drawn from the population is �replaced�
after drawing - this is sampling with replacement. So, sampling with-
out replacement makes the chance of being drawn from the population
di¤erent at each draw. However, if we have a �large� population, and a
�small� sample size relative to the population size, there is little practical
di¤erence between sampling with and sampling without replacement.

These distinctions are ignored in what follows.

10.3.3 Sampling from a probability distribution

It is helpful to see an example of sampling from a population: the example is
simple enough to make the link to sampling from a probability distribution
transparent.

The population contains 1000 elements, but only three distinct values oc-
cur in this population, 0; 1; 2; with population relative frequencies p0; p1; p2
respectively. We can consider this population as being equivalent to a ran-
dom variable X taking on the values 0; 1; 2 with probabilities p0; p1; p2: The
probability distribution of X can be represented as the table

Values of X Probability
0 p0
1 p1
2 p2

:

In this population, 0 occurs 1000p0 times, 1 occurs 1000p1 times and 2
occurs 1000p2 times. If we select an element from the population at random,
we don�t know in advance which element will be drawn, but every element

has the same chance,
1

1000
; of being selected. What is the chance that a

0 value is selected? Presumably this is ratio of the number of 00s to the
population size:

1000p0
1000

= p0:
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Exactly the same argument applies to selecting a 1 or a 2; producing selection
probabilities p1 and p2 respectively.

It is clear that the probability distribution of what might be drawn from
the population is that of the random variable X which �describes� this
population. So, it is appropriate to de�ne a random variable X1; say, which
describes what might be obtained on the �rst draw from this population.
The possible values of X1 are the three distinct values in the population,
and their probabilities are equal to the probabilities of drawing these values
from the population:

� X1 has the same probability distribution as X:

By the principle of (simple) random sampling, what might be drawn at
the second draw is independent of the �rst draw. The same values are
available to draw, with the same probabilities. What might be drawn at
the second drawing is also described by a random variable, X2; say, which
is independent of X1 but has the same probability distribution as X1:

� X2 is independent of X1; and has the same distribution as X.

We can continue in this way until n drawings have been made, resulting
in a random sample of size n: Each of the n random variables X1; :::; Xn
describing what might be drawn are independent random variables with
the same probability distribution as the random variable X describing the
population. To use a jargon phrase, these sample random variables are
independently and identically distributed.

We have to translate this process of sampling from a population to sam-
pling from the probability distribution of X: All we have to do is to say
that what one might get in a random sample of size 1 from the probability
distribution of X are the values of a random variable X1 with the same
probability distribution as X: For a random sample of size 2, what we might
get are the values of a pair of independent random variables X1; X2; each
having the same probability distribution as X: For a random sample of size
n; what we might get are the values of n independent random variables
X1; :::; Xn; each having the same probability distribution as X:

Although a particular population was used as an example, one can see
that the description of sampling from the corresponding probability distri-
bution yields properties that apply generally. Speci�cally, they apply even
when the random variable used to describe a population is a continuous
random variable.

To summarise, using the language of sampling from a probability distri-
bution,

� a random sample of size n from the probability distribution of a
random variable X
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� consists of sample random variables X1; :::; Xn

� that are mutually independent

� and have the same probability distribution as X;

� X1; :::; Xn are independently and identically distributed random
variables

� X1; :::; Xn are i.i.d.

It is important to note that this discussion relates to what might be
obtained in a random sample. The sample of data consists of the values
x1; :::; xn of the sample random variables X1; :::; Xn:

10.3.4 Examples

1. A random sample of size 3 is drawn from the population above. It
consists of three i.i.d random variables X1; X2; X3: Suppose that the
values in the sample of data are 0,0,1: that is,

x1 = 0; x2 = 0; x3 = 1:

2. Pursuing the graduate debt example of Section 10.3.1, suppose that
graduate debt is described by a random variable X with a normal
distribution, so that X is distributed as N

�
5000; 10002

�
:

X � N
�
5000; 10002

�
:

If 10 students are drawn at random from the population of students
(i.e. using a random sample), the debt at each drawing also has this
distribution. The random sample consists of 10 random variables
X1; :::; X10; mutually independent, and each Xi is normally distrib-
uted:

Xi � N
�
5000; 10002

�
; i = 1; :::; 10:

The sample of data is the values x1; :::; xn; for example,

x1 = 5754:0; x2 = 6088:0; x3 = 5997:5; x4 = 5572:3; x5 = 4791:9;

x6 = 4406:9; x7 = 5366:1; x8 = 6083:3; x9 = 6507:9; x10 = 4510:7:

3. An alternative version of Example 2. Suppose that X � N
�
�; �2

�
;

with � and �2 unknown: then the random sample of size 10 consists
of X1; :::; X10; mutually independent, and

Xi � N
�
�; �2

�
; i = 1; :::; 10:

If we suppose that the sample values are as shown above, it is tempting
to use this data to make a guess at � and �2:
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STATISTICS & SAMPLING
DISTRIBUTIONS

11.1 Statistics

Suppose that a random sample of size n has been obtained from the proba-
bility distribution of a random variable X: This gives n sample random vari-
ables X1; :::; Xn; and the sample of data consists of the values x1; :::; xn
of these random variables. In Section 2, Basic Descriptive Statistics, the
sample mean,

�x =
1

n

nX
i=1

xi

was considered an appropriate measure of location, and the sample variance

s2 =
1

n� 1

nX
i=1

(xi � �x)2

an appropriate measure of dispersion for a data set. There is a notation
change here, compared with Section 2, a notation change that is impor-
tant.

The sample mean and the sample variance are both examples of a sta-
tistic, a quantity which is a function of the data. We now consider them as
functions of the values x1; :::; xn of the sample random variables X1; :::; Xn:
There are expressions corresponding to �x and s2 in terms of these sample
random variables X1; :::; Xn :

�X =
1

n

nX
i=1

Xi;

S2 =
1

n� 1

nX
i=1

�
Xi � �X

�2
:

127



128 CHAPTER 11. STATISTICS & SAMPLING DISTRIBUTIONS

These expressions show that �X and S2 are functions of the sample random
variables X1; :::; Xn; and are therefore random variables themselves, having
probability distributions, expected values etc.

� The probability distributions of �X and S2 are called sampling dis-
tributions because they depend on a random sampling procedure.

Notice that with this new perspective, the statistic �x is a sample value
of the sample statistic �X; and the statistic s2 is a sample value of the
sample statistic S2:

� It is important to distinguish a statistic and a sample statistic: one
is a numerical value, the other a random variable, with a probability
distribution referred to as a sampling distribution.

11.2 Sampling Distributions

How are sampling distributions found? The following example shows that
it can be quite laborious to �nd them from �rst principles.

11.2.1 Example

Suppose that a random sample of size 2 is to be drawn from the probability
distribution of the random variable X; where this is given in the table

Values of X 0 1 2 E [X]

Probability 0:2 0:3 0:5 1:3
:

The random sample will consist of the independent random variablesX1; X2;
each with this probability distribution. So, for example, the probability of
obtaining the sample x1 = 0; x2 = 1 (for example), is, by independence,

Pr (X1 = 0; X2 = 1) = Pr (X1 = 0)Pr (X2 = 1)

= 0:06:

Here, the sample mean is

�X =
1

2
(X1 +X2) :

What is its probability distribution?
The strategy is to �nd out what possible samples can be drawn, what

their probability of occurrence is, and the value of �X implied by that sample.
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From this information we can deduce the probability distribution of �X: All
of these pieces of information are displayed in the table below:

Samples Probability Value of �X
(0; 0) 0:04 0
(0; 1) 0:06 0:5
(0; 2) 0:1 1
(1; 0) 0:06 0:5
(1; 1) 0:09 1
(1; 2) 0:15 1:5
(2; 0) 0:1 1
(2; 1) 0:15 1:5
(2; 2) 0:25 2

We can see what the possible values for �X are, and the probabilities of the
samples which are favourable to each value of �X. This leads to a table
displaying the probability distribution of �X :

Value of �X 0 0:5 1 1:5 2 E
�
�X
�

Probability 0:04 0:12 0:29 0:3 0:25 1:3

:

It is easily checked that the probabilities add up to 1, and that the expected
value calculation for �X is correct.

An important aspect of this example is that the expected value of �X
is equal to the expected value of X; which could here be described as the
population mean.

Another Example: the Binomial Distribution

This distribution is described in Section 5.2.4. Suppose that

� a (large) population consists of values 0 or 1;

� 1 indicates (for example) a household in the UK owning a DVD player,

� the (unknown) population relative frequency of 10s is �:

A random variable which can describe this population is one which takes
on values 0 and 1 with probabilities 1 � � and � respectively. Denote this
random variable by X; a Bernoulli random variable, discussed in Section
5.2.2.

Imagine that the experiment generating the value of a Bernoulli random
variable is repeated n times under identical conditions, in such a way that
the potential outcome of one experiment is independent of the other exper-
iments. Then, these repetitions are equivalent to drawing a random sample



130 CHAPTER 11. STATISTICS & SAMPLING DISTRIBUTIONS

of size n from this Bernoulli distribution. If the outcome of an experiment
is a value 1; call it a �success�.

Each experiment generates the value of a Bernoulli random variable Xi;
having the same distribution as X: Let the random variable T be the total
number of successes,

T =
nX
i=1

Xi:

Section 5.2.4 explains that in this situation, the probability distribution of
T is a binomial distribution:

Pr (T = t) =

�
n

t

�
�t (1� �)n�t ; t = 0; :::; n; 0 < � < 1:

How does this relate to the previous example?
We can use this to deduce the sampling distribution of the sample mean

�X; since it is related very simply to T :

�X =
1

n

nX
i=1

Xi =
T

n
:

We can deduce that if T can take on values 0; 1; 2; :::; n � 1; n then �X can
take on values

0;
1

n
;
2

n
; :::;

n� 1
n

; 1

and that

Pr

�
�X =

t

n

�
= Pr (T = t) ; t = 0; :::; n:

In principle, we could now try to show that the expected value of �X is equal
to the expected value of X; (which is �); the population mean. This will
follow from the discussion in the next section.

11.3 Sampling Distribution of �X

Assuming random sampling, we can �nd the mean and variance of the sam-
pling distribution of �X, without actually knowing what the sampling distri-
bution is. This is a very useful and important result.

Suppose that a random sample of size n is drawn from a population with
mean � and variance �2; or equivalently, from the probability distribution
of a random variable X with E [X] = �; var [X] = �2:

Since

�X =
1

n

nX
i=1

Xi;
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�X is a linear combination of the sample random variables X1; :::; Xn; so that
the results in Sections 9.1.2 and 9.2.1 can be used to �nd E

�
�X
�
and var

�
�X
�
:

The weights in the linear combination are all the same:

ai =
1

n
;

in the notation of those sections.
In turn, from the properties of random sampling, we know that

E [Xi] = E [X] = �;

var [Xi] = var [X] = �2:

11.3.1 The mean of the sample mean

This heading is deliberately misleading: what is meant precisely is the ex-
pected value or expectation of the sampling distribution of the sample mean.

� In random sampling, the expected value of �X is equal to the population
mean, �:

Proof: From Section 9.1.2,

E
�
�X
�
= E

"
1

n

nX
i=1

Xi

#

=
1

n

nX
i=1

E [Xi]

=
1

n

nX
i=1

�

= �:

11.3.2 The variance of the sample mean

Random sampling makes the sample random variables X1; :::; Xn indepen-
dent and therefore uncorrelated. We can then use the slogan of Section 9.2:
the variance of a weighted sum is a weighted sum of variances to prove that

� in random sampling, the variance of the sample mean is
�2

n
:
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Proof:

var
�
�X
�
= var

"
1

n

nX
i=1

Xi

#

=

nX
i=1

var

�
1

n
Xi

�

=

nX
i=1

�
1

n

�2
var [Xi]

=

nX
i=1

�
1

n

�2
�2

=
n�2

n2

=
�2

n
:

The square root of var
�
�X
�
is the standard deviation of �X; and this

is usually given the speci�c name of standard error. So far, we have iden-
ti�ed population parameters with the parameters of the distribution of the
corresponding random variable X: We can extend this to cover characteris-
tics or parameters of the probability distributions of sample statistics like
�X: So, var

�
�X
�
is a parameter of the probability distribution of �X; and so

is the standard error,
SE
�
�X
�
=

�p
n
:

11.3.3 Example

In the Example of Section 11.2.1, we found E [X] = 1:3; and it is easy to
�nd that

E
�
X2
�
= (0)2 (0:2) + (1)2 (0:3) + (2)2 (0:5) = 2:3;

so that the population variance is

var [X] = 2:3� (1:3)2 = 0:61:

We also found that E
�
�X
�
= 1:3; and we can calculate from the probability

distribution of �X that

E
�
�X2
�
= (0)2 (0:04) + (0:5)2 (0:12) + (1)2 (0:29) + (1:5)2 (0:3) + (2)2 (0:25)

= 1:995:

This gives
var
�
�X
�
= 1:995� (1:3)2 = 0:305
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which is precisely
�2

2
=
0:61

2
;

matching the theoretical result exactly, since n = 2 here.
Here, the standard error is

SE
�
�X
�
=
p
0:305 = 0:552:

11.3.4 Summary

The results presented above are so important that they need to be stated
compactly.

� If a random sample of size n is drawn from a population with mean �
and variance �2;

� the expected value of �X is equal to the population mean, � : E
�
�X
�
=

�;

� the variance of the sample mean is �
2

n
: var

�
�X
�
=
�2

n
:

Notice that the variance of �X declines, relative to the population vari-
ance, as the sample size n increases. This is due explicitly to the �averaging�
e¤ect contained in the sample mean. Clearly, the same applies to the stan-
dard error SE

�
�X
�
as well.

11.3.5 The Binomial case

Here, �X is obtained by random sampling from a Bernoulli distribution,
with success probability � - see Section 11.2.1. So, if X has a Bernoulli
distribution, the population mean and population variance are

E [X] = (0) (1� �) + (1) (�) = �;
E
�
X2
�
= (0)2 (1� �) + (1)2 (�) = �;

var [X] = E
�
X2
�
� (E [X])2 = � � �2 = � (1� �) :

Using the general properties from Sections 11.3.1 and 11.3.2, it will follow
that

E
�
�X
�
= �; var

�
�X
�
=
� (1� �)

n
:

In turn, we can use the relationship

�X =
T

n

to deduce that if T has a Binomial distribution,

E [T ] = n�; var [T ] = n2 var
�
�X
�
= n� (1� �) :

This con�rms the results given in Section 8.6.1.
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11.3.6 The Sampling Distribution

It is worth emphasising that the results above have been deduced without
knowing the nature of the distribution which has been sampled. Without
such information we cannot calculate, for any value x,

Pr
�
�X 6 x

�
:

In the example of Section 11.2.1, it was easy to �nd the probability distri-
bution of �X from �rst principles. In the next example, in Section 11.2.1,
we saw that the nature of the population and its corresponding Bernoulli
random variable generated a sampling distribution which was a Binomial
probability distribution. So, the sampling distribution of �X changes as we
change the population probability distribution.

The classical example of the sampling distribution of �X is where the
population probability distribution is a normal distribution. In Section
9:3; it was stated that a linear combination of normal random variables also
has a normal distribution. Since �X is such a linear combination - see the
beginning of Section 11.3, it follows that �X also has a normal distribution.

This result is very important. Almost all of the rest of this course
depends on this result.

� If a random sample of size n is drawn from the distribution X �
N
�
�; �2

�
; then

�X � N
�
�;
�2

n

�
:

Note that the mean and variance of this distribution is exactly that
deduced above without using knowledge of the population probability
distribution.

� Example. IQ tests are designed to behave as if they are drawings
from a normal distribution with mean 100 and variance 400 : X �
N (100; 400). Suppose that a random sample of 25 individuals is ob-
tained. Then,

�X � N
�
100;

400

25

�
; or, �X � N (100; 16) :

We can then calculate, for example,

Pr
�
�X < 90

�
= Pr

� �X � 100
4

<
90� 100

4

�
= Pr (Z < �2:5)
= 0:0062:
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11.3.7 Sampling from Non-Normal distributions

In this case, the sampling distribution of �X will not be normal. However,
if we imagine that the sample size n is allowed to increase without bound,
so that n ! 1; we can appeal to a famous theorem (more accurately,
a collection of theorems) in probability theory called the Central Limit
Theorem. This states that

� if �X is obtained from a random sample of size n from a population
with mean � and variance �2; then, irrespective of the distribution
sampled,

�X � �
SE
�
�X
� = �X � �

(�=
p
n)
! N (0; 1) as n!1:

That is, the probability distribution of
�X � �
SE
�
�X
� approaches the stan-

dard normal distribution as n!1:

We interpret this as saying that

�X � �
SE
�
�X
� = �X � �

(�=
p
n)
� N (0; 1) ; approximately

for �nite n:

� An alternative is to say that

�X � N
�
�;
�2

n

�
approximately

for �nite n:

The rate at which the standard normal distribution is approached in-
�uences the quality of the approximation. This is expected to improve as
n increases, and textbooks usually claim that the approximation is good
enough if

n > 20 or n > 30:

The idea that �X has an approximate normal distribution as n ! 1 is
often described as the large sample normality of the sample mean. The
textbook claim here is that a �large�sample is at least 20. This is not really
reasonable, but is adequate for use in a course like this.

So, in the IQ example above, we can argue that Pr
�
�X < 90

�
= 0:0062

approximately if in fact IQ�s are not normally distributed, but do have
population mean 100 and population variance 400:
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Chapter 12

POINT ESTIMATION

It was stated in Section 10.2.1 that the objective of statistics is to learn
about population characteristics or parameters. The values of these pa-
rameters are unknown to us, and generally, we will never discover their
values exactly. The objective can then be restated as making (statistical)
inferences on (unknown) population parameters, using data from a random
sample from the population. We now know that this is equivalent to draw-
ing a random sample from the probability distribution of a random variable
X; producing sample random variables X1; :::; Xn which are mutually inde-
pendent and have the same probability distribution as X:We can construct
sample statistics like �X; and conceptually �nd their sampling distributions,
and the characteristics or parameters of these sampling distributions.

12.1 Estimates and Estimators

12.1.1 Example

The basic principle of estimation of population parameters is very simple,
and is best motivated by an example. Suppose that a random sample of size
3 is drawn from a population with mean � and variance �2; both parameters
being unknown. The values in the sample are

x1 = 5; x2 = 20; x3 = 11

with

�x =
5 + 20 + 11

3
= 12:

Then, the (point) estimate of � is �x = 12:

137
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Similarly, we can calculate the sample variance s2 from

s2 =
1

n� 1

nX
i=1

(xi � �x)2

=
1

n� 1

 
nX
i=1

x2i � n�x2
!
:

Here,
nX
i=1

x2i = 25 + 400 + 121 = 546;

so that

s2 =
1

2
(546� (3) 144) = 114

2
= 57:

Then, the (point) estimate of �2 is s2 = 57:

12.1.2 Principle of Estimation

The principle appears to be that of estimating a population characteristic
by its corresponding sample version. However, there is another important
principle here. We are calculating numerical estimates of the population
parameters using the sample values �x and s2 of what have previously been
called sample statistics like �X and S2: The latter are random variables,
and have probability distributions; �x and s2 are values of these random vari-
ables. Additional terminology is required to make sure that this distinction
is preserved when using the language of estimation of population parameters:

� an estimator is the sample statistic;

� an estimator is the random variable which is a function of the sample
random variables X1; :::; Xn;

� an estimate is the value of the sample statistic;

� an estimate is the statistic or number calculated from the sample
values x1; :::; xn:

Another aspect is that

� an estimator is a random variable and hence has a probability distri-
bution

� an estimate is a value of this random variable.
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In this course, we have encountered a number of population parameters:
mean, variance, proportion, covariance, correlation. The following table
displays the parameters, their estimators and their estimates.

Population Parameter Estimator Estimate

mean: � �X =
1

n

nX
i=1

Xi �x =
1

n

nX
i=1

xi

variance: �2 S2 =
1

n� 1

nX
i=1

�
Xi � �X

�2
s2 =

1

n� 1

nX
i=1

(xi � �x)2

covariance: �XY SXY =
1

n� 1

nX
i=1

�
Xi � �X

� �
Yi � �Y

�
sXY =

1

n� 1

nX
i=1

(xi � �x) (yi � �y)

correlation: � R =
SXY
SXSY

r =
sXY
sXsY

proportion: � P p

Most of the quantities in this table have appeared in the discussion of de-
scriptive statistics in Section 2.3. The (sample) correlation coe¢ cient R
is shown explicitly as a function of the sample covariance and the sample
variances to emphasise that the estimator of the population correlation co-
e¢ cient � is derived from other estimators. Out of the quantities in this
table, we shall be concerned almost exclusively with the behaviour of the
sample mean �X: The sample variance S2 will also appear in a minor role,
but none of the other quantities will concern us further.

One other small detail to explain in this table is the absence of an ex-
pression for the estimator or estimate of the population proportion. This
is because the sample mean is the required quantity, when sampling from
a population of zeros and ones or equivalently from the distribution of a
Bernoulli random variable - see Section 11.2.1 above. The possible sample
values for �x are

0;
1

n
;
2

n
; :::;

n� 1
n

; 1 :

these are precisely the proportions of 10s in the sample, and are thus values
of the sample proportion.

12.1.3 Point Estimation

The adjective �point� seems to play no role in the discussion. It serves
mainly to distinguish the ideas from another concept of estimation called
interval estimation, which will be discussed shortly. The distinction is simply
that a point estimate is a single number, whilst an interval estimate is
an interval of numbers.
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12.2 Properties of Estimators

The discussion of the sampling distribution of the sample mean �X in Section
11.3 can be carried over to the case where �X is considered as an estimator of
�: More generally, if � is some population parameter which we estimate by a
sample statistic U; then we expect that U will have a sampling distribution.
We can use this sampling distribution to obtain information on how good
U is as an estimator of �: After all, there may be a number of possible
estimators of � and it is natural to want to use the estimator that is best
in some sense, or at least, avoid using estimators that have undesirable
properties. This raises the issue of what desirable properties an estimator
should possess.

The relevance of the sampling distribution of an estimator for this is-
sue can be motivated in the following way. Di¤erent samples of data will
generate di¤erent numerical values for u - that is, di¤erent values for the
estimator U: A value of u will only equal the population parameter � by
chance. Because population parameters are generally unknown, we will not
know when this happens anyway. But, the sampling distribution of U repre-
sents, intuitively, the �chance�of such an occurrence, and we can calculate
from it, in principle, the appropriate probabilities.

12.2.1 Unbiased Estimators

Following this rather intuitive argument, if we cannot detect whether the
estimate is actually correct, we could resort to demanding that the estimate
be correct �on average�. Here, the appropriate concept of averaging is that
embodied in �nding the expected value of U: We can then say that

� if E [U ] = �; then U is an unbiased estimator of �;

� an unbiased estimator is correct on average;

� if E [U ] 6= �; then U is a biased estimator of �:

� a biased estimator is incorrect on average.

It is clear that unbiasedness is a desirable property for an estimator,
whilst bias is an undesirable property.

So, to show that an estimator is unbiased, we have to �nd its expected
value, and show that this is equal to the population parameter being esti-
mated.

12.2.2 Examples

In Section 11.3.1, we showed that in sampling from a population with mean
� and variance �2;

E
�
�X
�
= �:
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So, without any further conditions, the sample mean is unbiased for �:
It is also true that the sample variance S2 is unbiased for �2 :

E
�
S2
�
= E

"
1

n� 1

nX
i=1

�
Xi � �X

�2#
= �2:

One can guess from this that the use of the divisor n � 1 rather than n is
important in obtaining this property. Given this result, we can see that

E

"
1

n

nX
i=1

�
Xi � �X

�2#
= E

�
n� 1
n

S2
�
=
n� 1
n

�2;

so that this alternative de�nition of sample variance produces a biased
estimator of �2: On the other hand, the systematic underestimation of �2

implied by the nature of the bias will disappear as the sample size n increases.
The estimator S2 is used simply because it is unbiased.

It is possible to show, but not in this course, that the sample covariance
SXY is unbiased for the population covariance �XY :

The sample correlation coe¢ cient R is in general biased for the popula-
tion correlation coe¢ cient �; because it is a ratio of random variables. This
does not seem to prevent its widespread practical use, however.

12.2.3 Biased Sampling Procedures

All of these results are based on drawing a random sample from the pop-
ulation. One would expect that a sampling procedure not based on the
principles behind random sampling (see Section 10.3) would automatically
generate biased estimators of population parameters. This is an important
issue for the design of o¢ cial sample surveys and market research surveys.
The consequences of inappropriate design are illustrated in the following
example.

To estimate the mean income of households in the UK, a researcher uses
a sample of households selected at random from the telephone directory.
The sample mean income will be taken as an estimate of the population
mean income. To illustrate the possible consequences of this sample design,
suppose that it is known that the population of households with telephones
have a mean income of £ 20000, whilst households without telephones have
mean income £ 10000. Out of the total population, 80% of households have
a telephone.

One can show that the overall UK population mean income is

(0:8) ($20000) + (0:2) ($10000) = $18000:

By construction, the sample design here gives an unbiased estimator of the
mean of the population of households with a telephone, £ 20000, but a biased
estimator of the overall population mean of £ 18000.
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12.2.4 E¢ ciency

Unbiasedness is a weak property of an estimator: even a random sample of
size 1 from a population with mean � yields a trivial sample mean which
is unbiased. The sample random variable is X1; and by the random sam-
pling principle, has a distribution which is the same as the population being
sampled. Hence

E [X1] = �:

It was seen in Section 11.3.2 that var
�
�X
�
=
�2

n
; which diminishes as n

increases. If we suppose temporarily that sampling is from a normal dis-

tribution N
�
�; �2

�
; so that �X s N

�
�;
�2

n

�
; we can see graphically the

e¤ect of increasing the sample size. Figure 12.2.4 shows that a sample size
of n = 500 yields a sampling distribution for �X which is much more concen-
trated around the population mean � than for the case n = 50: Intuitively,
this means that �large� deviations away from � are much less likely for
n = 500 than for n = 50:

19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8 21
0

0.5

1

1.5

2

2.5

3

3.5

4

n = 500 →

← n = 50

19.9 20.1

This line of thought underlies the concept of the e¢ ciency of an esti-
mator. Suppose that U and V are unbiased estimators of a population
parameter �: Then,
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� the e¢ ciency of U relative to V is de�ned as

e� (U; V ) =
var [V ]

var [U ]
;

� if var [U ] < var [V ] ; U is more e¢ cient than V; with

e� (U; V ) > 1;

� if var [U ] > var [V ] ; U is less e¢ cient than V; with

e� (U; V ) < 1;

� e¢ ciency does not depend on the nature of the sampling distribution.

12.2.5 Example

For the sake of illustration, suppose that it is known that household income
in £ �000 is described by a random variable X s N (20; 5) : one would usually
say household income in £ �000 is distributed as N (20; 5)

From earlier results, if �X50 is the sample mean of a sample of size 50;
and �X500 the sample mean of a sample of size 500; then

�X50 s N
�
20;

5

50

�
; �X500 s N

�
20;

5

500

�
:

We can easily calculate that

e�
�
�X500; �X50

�
=
(5=50)

(5=500)
=
500

50
= 10:

There are other ways of representing e¢ ciency, if, as here, the nature of the
sampling distribution is known.

12.2.6 How close is �X to �?

This discussion follows on from the previous example. If we sample from

N
�
�; �2

�
; so that �X s N

�
�;
�2

n

�
; we can measure the closeness of �X to

� by the probability
Pr
�
�" < �X � � < "

�
;

where " is an arbitrary positive number. If we recall that for any number z;
the event

jzj < "
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is equivalent to
(z < ") ; and (�z < ") ;

or
(z < ") ; and (z > �") ;

we see that

Pr
�
�" < �X � � < "

�
= Pr

��� �X � �
�� < "�

= Pr

 �� �X � �
��

�=
p
n
<

"

�=
p
n

!
:

This probability can be expressed as the probability that �X lies within
�" of �: The point is that this probability will increase with n; since the
factor

"

�=
p
n
is equal to

"

�=
p
n
=
p
n
"

�
:

For the example in Section 12.2.5, we arbitrarily choose " = 0:1: The
usual normal probability calculations give, for � = 20 and �2 = 5;

Pr
�
�0:1 < �X50 � � < 0:1

�
= Pr (�0:32 < Z < 0:32) = 0:252;

Pr
�
�0:1 < �X500 � � < 0:1

�
= Pr (�1 < Z < 1) = 0:682:

This comparison is more obvious in Figure 12.2.6: This shows that more e¢ -
cient estimators have distributions that are much more concentrated around
the mean �: Calculation of the probabilities for a given " is a way of quan-
tifying this relative concentration.

12.3 Estimating the population proportion

Section 11.2.1 showed how a Bernoulli random variable X; taking on the
value 0 with probability 1 � � and the value 1 with probability �; could
represent a population of zeros and ones, with 1 representing the fact that
a household in the population owned a DVD player, and a 0 that it doesn�t.
Here, � is the unknown population proportion of successes. In Section 12.1.2,
it was shown that the sample mean �X of a random sample of size n from a
Bernoulli distribution takes on values

0;
1

n
;
2

n
; :::;

n� 1
n

; 1

and is the sample proportion P of successes. Recall that in Section 11.2.1,
the total number of successes in n Bernoulli trials, T; was shown to have a
Binomial distribution, and that �X was represented as

�X =
T

n
:
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0.252

0.682

As a result, we can also de�ne P in terms of T :

P =
T

n
;

with sample value

p =
t

n
:

Here, t is the total number of successes in a given sample.
So, we know (from Section 11.3.5) that

E
�
�X
�
= E [P ] = �;

var
�
�X
�
= var [P ] =

� (1� �)
n

;

so that P is an unbiased estimator of �:
From the results in Section 11.2.1, we know that the sampling distribu-

tion of P is related to that of the Binomial random variable T: Suppose that
we draw a random sample of size 50 from the distribution of a Bernoulli
random variable with success probability � = 0:6; say. What is

Pr (P 6 0:4)?

Since

P =
T

n
;
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it must be true that
P 6 0:4

is equivalent to
T

50
6 0:4 or T 6 20:

Then,

Pr (P 6 0:4) = Pr (T 6 20)

=

�
50

0

�
(0:6)0 (0:4)50 + :::+

�
50

20

�
(0:6)20 (0:4)30 :

This is impossible to calculate by hand, but not a problem for a computer.
EXCEL and other statistical packages can handle these calculations with

ease: instructions for doing this are given Section 12.4. A simple use of the
appropriate function in EXCEL yields, with no further e¤ort,

Pr (T 6 20) = 0:003360382:

The traditional response to this practical di¢ culty in calculation is to
argue that since the sample proportion P is a sample mean, and since the
Central Limit Theorem of Section 11.3.7 can be applied to the sample mean,
we have

P � �p
� (1� �) =n

s N (0; 1) approximately

or, equivalently,

P s N
�
�;
� (1� �)

n

�
approximately:

Further, if P =
T

n
; it should follow that the Binomial random variable

T has an approximate normal distribution,

T � N (n�; n� (1� �)) approximately:

12.3.1 An Example

Under the conditions above,

P s N
�
0:6;

(0:6) (0:4)

50

�
approximately.

The variance here is

(0:6) (0:4)

50
=
0:24

50
= 0:0048:
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Applying the usual arguments,

Pr (P 6 0:4) = Pr

�
P � 0:6p
0:0048

6 0:4� 0:6p
0:0048

�
= Pr (Z 6 �2:8868)
= 0:001945974:

This latter calculation was also performed in EXCEL. This is not a partic-
ularly good approximation to the exact value given in the previous section,
and illustrates one of the drawbacks to the sweeping statements that the
approximation is good for n > 20; irrespective of any other conditions.

12.3.2 The normal approximation for T

Consider the claim that

T � N (n�; n� (1� �)) approximately:

Suppose that Y is a random variable such that

Y � N (n�; n� (1� �)) exactly:

The Central Limit Theorem asserts that T has approximately the same
probability distribution as Y; if n is large. So, we might try to approximate
Pr (T = t) by Pr (Y = t) : But, Y is a continuous random variable, so that

Pr (Y = y) = 0

for any value y - see Section 6.1. Approximating Pr (T = t) in this way is
clearly not a good idea.

The solution is to approximate Pr (T = t) by an area under the density
of Y as

Pr (T = t) �= Pr
�
t� 1

2
6 Y 6 t+ 1

2

�
for t = 1; :::; n� 1: For t = 0 and t = n; use

Pr (T = 0) �= Pr
�
Y 6 1

2

�
; Pr (T = n) �= 1� Pr

�
Y 6 n� 1

2

�
:

see Figure 12.3.2.
This approximation has the advantage that the approximate probabili-

ties for T add up to 1; as they should.
We can also see that (for t = 1; :::; n� 1)

Pr (T 6 t) = Pr
�
P 6 t

n

�
�= Pr

�
Y 6 t+ 1

2

�
;
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so that it may provide a better approximation for P probabilities. This is
easily adapted to the cases t = 0 and t = n:

In the example of the previous Section, where n = 50 and � = 0:6;

Y � N (30; 12)

with
t = 20;

t

n
=
20

50
= 0:4:

So,

Pr (P 6 0:4) �= Pr (Y 6 20 + 0:5)

= Pr

�
Z 6 20:5� 30p

12

�
= Pr (Z 6 �2:74)
= 0:00307;

which is closer to the correct value

Pr (T 6 20) = 0:003360382

than the previous calculation.

12.3.3 Another Example

For another example, suppose that it is known that a certain parliamentary
constituency contains 45% of Tory voters. A random sample of 20 electors
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is drawn, yielding 6 Tory voters, or a sample value for the Binomial random
variable T of 6. What are the exact and approximate values of

Pr(T = 6)?

The exact value is

Pr(T = 6) =

�
20

6

�
(0:45)6 (0:55)14 = 0:0745996:

Since

E [T ] = (20) (0:45) = 9;

var [T ] = (20) (0:45) (0:55) = 4:95;

the distribution of T is approximated by

Y � N (9; 4:95) :

Then,
Pr (T = 6) �= Pr (5:5 6 Y 6 6:5) = 0:07273327;

which is reasonable, compared with the exact probability. Figure 12.3.2
displays the approximate probability.

Why then is this type of approximation, called the continuity correction,
not always widely used? Consider the approximation formula

Pr

�
P 6 t

n

�
�= Pr

 
Z 6 t+ 0:5� n�p

n� (1� �)

!

which underlies the calculation of Pr (P 6 0:4) in the previous section. One
has to convert the P probability into a T probability, apply the approxi-
mation with continuity correction, and then standardise - quite di¢ cult to
remember in an examination! In addition, the factor

0:5p
n� (1� �)

approaches 0 as n!1; so that the correction is irrelevent for large enough
n:

12.3.4 Exercise 6

1. Suppose that Y s N (6; 2) ; and that �Y is the sample mean of a (sim-
ple) random sample of size n: Find:

(a) Pr (Y > 8) ;
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(b) Pr
�
�Y > 8

�
when n = 1;

(c) Pr
�
�Y > 8

�
when n = 2;

(d) Pr
�
�Y > 8

�
when n = 5;

Sketch, on the same axes, the sampling distribution of �Y for n = 1; 2; 5:

2. In a certain population, 60% of all adults own a car. If a simple random
sample of 100 adults is taken, what is the probability that at least 70%
of the sample will be car owners? (Optional: use EXCEL to �nd the
exact probability.)

3. When set correctly, a machine produces hamburgers of mean weight
100g each and standard deviation 5g each. The weight of hamburgers
is known to be normally distributed. The hamburgers are sold in
packets of four.

(a) What is the sampling distribution of the total weight of ham-
burgers in a packet? In stating this sampling distribution, state
carefully what results you using and any assumptions you have
to make.

(b) A customer claims that packets of hamburgers are underweight.
A trading standards o¢ cer is sent to investigate. He selects one
packet of four hamburgers and �nds that the weight of hamburg-
ers in it is 390g: What is the probability of a packet weighing as
little as 390g if the machine is set correctly? Do you consider
that this �nding constitutes evidence that the machine has been
set to deliver underweight hamburgers?

4. A discrete random variable, Y; has the following probability distribu-
tion:

y 0 1 2

p (y) 0:3 0:4 0:3

(a) What are E [Y ] and ymin; where ymin is the smallest possible value
of Y ?

(b) Simple random samples of two observations are to be drawn with
replacement from this population. Write down all possible sam-
ples, and the probability of each sample. Use this to obtain the
sampling distribution of each of the following statistics:

i. the sample mean, �Y ;
ii. the minimum of the two observations, M:

(c) Calculate E
�
�Y
�
and E [M ] : State whether each is an unbiased

estimator of the corresponding population parameter.
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5. A random sample of size three is drawn from the distribution of a
Bernoulli random variable X; where

Pr (X = 0) = 0:3; Pr (X = 1) = 0:7:

(a) Enumerate all the possible samples, and �nd their probabilities
of being drawn. You should have eight possible samples.

(b) Find the sampling distribution of the random variable T; the total
number of ones in each sample.

(c) Check that the probability distribution of T is the Binomial dis-
tribution for n = 3 and � = 0:7; by calculating

Pr (T = t) =

�
3

t

�
(0:7)t (0:3)3�t

for t = 0; 1; 2; 3:

(d) Find the probability distribution of P; the sample proportion of
ones. How is this probability distribution related to that of T?

(e) Is P an unbiased estimator of Pr (X = 1)?

6. A simple random sample of three observations is taken from a popula-
tion with mean � and variance �2: The three sample random variables
are denoted Y1; Y2; Y3: A sample statistic is being sought to estimate
�: The statistics being considered are

(a) i. A1 =
1

3
(Y1 + Y2 + Y3) ;

ii. A2 =
1

2
(Y1 + Y2) ;

iii. A3 =
1

2
(Y1 + Y2 + Y3) ;

iv. A4 = 0:75Y1 + 0:75Y2 � 0:5Y3:
(b) Which of these statistics yields an unbiased estimator of �?

(c) Of those that are unbiased, which is the most e¢ cient?

(d) Of those that are unbiased, �nd the e¢ ciency with respect to A1:

12.4 Using EXCEL

The calculation of Binomial probabilities in EXCEL uses the statistical func-
tion

Binomdist(Number_s,Trials,Probability_s,TRUE)

for
Pr (T 6 Number_s)
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where T has the Binomial distribution with n = Trials trials, and suc-
cess probability � = Probability_s. The component TRUE indicates the
calculation of a cumulative probability. If this is replaced by FALSE, the
probability

Pr (T = Number_s)

is calculated.



Chapter 13

CONFIDENCE INTERVALS

13.1 Point and Interval Estimation

In Section 12.1.3, it was noted that an estimate of a population parameter
is a single number. Bearing in mind the fact that in general, the values of
population parameters are unknown, it is easy to fall into the trap of treating
the estimated value as if it were actually the �true�population value. After
all, the estimate is derived from a single sample out of all the possible samples
that might be drawn. Di¤erent samples will yield di¤erent estimates of the
population parameter: this is the idea of sampling variability. One can
see the usefulness of obtaining from a single sample, some idea of the
range of values of the estimate that might be obtained in di¤erent samples.
This is the purpose of an interval estimate. There is an alternative and more
popular name, con�dence interval. Initially this name is not used because
it does not permit the distinction between an interval estimator and an
interval estimate.

13.1.1 Sampling Variability

Consider the simplest case of sampling from a normal distribution, X s
N
�
�; �2

�
with the intention of estimating �: The obvious estimator is the

sample mean, �X; with sampling distribution �X s N

�
�;
�2

n

�
: Here, � is

unknown: one issue will be whether the population parameter �2 is also
unknown. From the general principle that population parameters are un-
known, the answer should be �yes�, but it will be convenient to assume, for
simplicity, that �2 is actually known.

The variance of the distribution of �X measures the dispersion of this
distribution, and thus gives some idea of the range of values of �X that might
be obtained in drawing di¤erent samples of size n: The question is, though,
what is an �extreme�or �untypical�value of �X? The conventional way to
de�ne this is by using a multiple of the standard error of �X; SE

�
�X
�
; as

153



154 CHAPTER 13. CONFIDENCE INTERVALS

a measure of sampling variability. Then, �extreme�values do not belong to
the interval

�x� k SE
�
�X
�
;

with the value k chosen suitably. Then, the factor �k SE
�
�X
�
is the measure

of sampling variability around �x: Clearly, the parameter SE
�
�X
�
has to be

known in order for the measure of �sampling variability to be computed.
This measure partially re�ects the inherent variability in the population,

as represented by the population variance �2: Usually, it has to be estimated
by using the sample variance s2 instead of �2: It is via the use of s2 that the
measure of sampling variability is being calculated from a single sample.

How should k be chosen? A conventional value is k = 2 : why this might
be popular will be seen shortly.

To illustrate the reasoning here, we use an example that also appears
later in Section 13.2.3. Suppose that a random sample of size 50 is drawn
from the distribution of household incomes, where the latter is supposed to
be N (�; 5) ; and that the mean of the sample is �x = 18: If we choose k = 2;
the measure of sampling variability is

�2 SE
�
�X
�
= � (2)

r
5

50
= �0:6325;

which could reasonably be said to be rather small.

13.2 Interval Estimators

It is simplest to see how an interval estimator is constructed within the
context of estimating the mean � of a normal distribution N

�
�; �2

�
using

the sample mean �X of a random sample of size n: An interval has to have two
endpoints, and an estimator is a random variable, so we seek two random
variables CL and CU such that the closed interval [CL; CU ] contains the
parameter � with a pre-speci�ed probability. Rather obviously, this is a
random interval because its endpoints are random variables.

This interval estimator [CL; CU ] is also called a con�dence interval,
and the prespeci�ed probability is called the con�dence coe¢ cient or
con�dence level. The corresponding interval estimate is then the sample
value of this random interval: [cL; cU ] : The sample values cL; cU are called
the lower and upper con�dence bounds or limits.

13.2.1 Construction of the Interval Estimator

From the sampling distribution of �X; for any given value k we can �nd the
probability that

Pr

 
�k 6

�X � �
SE
�
�X
� 6 k!
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as

Pr

 
�k 6

�X � �
SE
�
�X
� 6 k! = Pr (Z 6 k)� Pr (Z 6 �k)

for Z s N (0; 1) ; just as in Section 12.2.6. So, if we choose k = 1:96;

Pr

 
�1:96 6

�X � �
SE
�
�X
� 6 1:96! = 0:95:

By manipulating the two inequalities inside the brackets, but without
changing the truth content of the inequalities, we can rewrite this so that
the centre of the inequalities is the unknown parameter �: The sequence is
to

1. multiply across by SE
�
�X
�
to give

Pr
�
�1:96 SE

�
�X
�
6 �X � � 6 1:96 SE

�
�X
�	
= 0:95;

2. move �X from the centre:

Pr
�
� �X � 1:96 SE

�
�X
�
6 �� 6 � �X + 1:96 SE

�
�X
�	
= 0:95;

3. multiply through by �1 :

Pr
�
�X + 1:96 SE

�
�X
�
> � > �X � 1:96 SE

�
�X
�	
= 0:95;

4. tidy up:

Pr
�
�X � 1:96 SE

�
�X
�
6 � 6 �X + 1:96 SE

�
�X
�	
= 0:95:

Notice that because the manipulations do not change the truth content
of the inequalities, the probability of the �X event de�ned by the inequalities
is not changed.

If we identify the endpoints CL; CU of the interval estimator with the
endpoints of the interval in part (4),

CL = �X � 1:96 SE
�
�X
�
; CU = �X + 1:96 SE

�
�X
�
;

we will have constructed a random interval with the desired properties:

Pr (CL 6 � 6 CU ) = 0:95:

An alternative expression for this uses membership of the interval:

Pr (� 2 [CL; CU ]) = 0:95:
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In both expressions, � is �xed and unknown. It is the random variables CL
and CU which supply the chance behaviour, giving the possibility that �
=2 [CL; CU ] with some non-zero probability. Indeed, by construction, the
interval estimator fails to contain (more strictly, cover) the unknown value
� with probability 0:05 :

Pr (� =2 [CL; CU ]) = 0:05:

To summarise, in the standard jargon:

� a 95% con�dence interval for � is given by the random interval or
interval estimator�

�X � 1:96 SE
�
�X
�
; �X + 1:96 SE

�
�X
��

13.2.2 The Interval Estimate

This interval is de�ned by the sample values of CL and CU : these are the
lower and upper con�dence bounds

cL = �x� 1:96 SE
�
�X
�
; cU = �x+ 1:96 SE

�
�X
�
:

The interval estimate
�x� 1:96 SE

�
�X
�

contains the measure of sampling variability discussed in Section 13.1.1.
The choice of k as k = 1:96 is now determined by the desired con�dence
level. Why choose the latter to be 0:95 or 95%? This is really a matter of
convention.

It is a common abuse of language to call the interval

�x� 1:96 SE
�
�X
�

the con�dence interval - indeed it is so common that this abuse will be
allowed. Strictly, this is an interval estimate, which is now seen to be a
combination of a point estimate, �x; of �; and a measure of sampling vari-
ability determined by the constant k; which sets the con�dence coe¢ cient
or level, in this case, 0.95.

There is a common misinterpretation of a con�dence interval, based on
this abuse of language, which says that the con�dence interval

�x� 1:96 SE
�
�X
�

contains � with 95% con�dence. Why is this a misinterpretation? For the
following reasons:

� � is unknown;
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� so this �con�dence interval�may or may not contain �;

� since � is unknown, we will never know which is true;

� the �con�dence level�is either 0 or 1, not 0:95.

A better interpretation is based on the relative frequency interpretation
of probability. If samples are repeatedly drawn from the population, say
X s N

�
�; �2

�
; and the interval estimates (�con�dence interval�) for a

95% con�dence level calculated for each sample, about 95% of them will
contain �: However, this doesn�t help when only a single sample is drawn.
In any case, this interpretation is only a relative frequency restatement of
the principle behind the construction of the interval estimator.

Ultimately, we have to abandon interpretations like this and return to
the idea of obtaining from a single sample, a point estimate of a popula-
tion parameter and a measure of sampling variability. An interval estimate
(�con�dence interval�) does precisely this, in a speci�c way.

13.2.3 An Example

As in Section 13.1.1, suppose that a random sample of size 50 is drawn from
the distribution of household incomes, where the latter is supposed to be
N (�; 5) : Notice that �2 here is supposed to be known to equal 5: Suppose
that the mean of the sample is �x = 18: Then, the 95% con�dence interval
for � is (allowing the abuse of language)

�x� 1:96 SE
�
�X
�
= 18� 1:96

r
5

50
= 18� 0:62
= [17:38; 18:62] :

Here the measure of sampling variability around �x = 18 is �0:62: One might
reasonably conclude that since this measure of sampling variability is small
compared to �x; �x = 18 is a relatively precise estimate of �: To refer to
precision here is fair, since we are utilising the variance of the sampling
distribution of �X:

13.2.4 Other Con�dence Levels

Instead of choosing k so that

Pr

 
�k 6

�X � �
SE
�
�X
� 6 k! = 0:95;

we choose it to deliver the desired probability, usually expressed as 1� � :

Pr

 
�k 6

�X � �
SE
�
�X
� 6 k! = 1� �:
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The reason for the use of 1� � is explained later. Since

Z =
�X � �
SE
�
�X
� s N (0; 1) ;

we can �nd from the tables of the standard normal distribution the value
(percentage point) z�=2 such that

Pr
�
Z > z�=2

�
=
�

2
:

This implies that

Pr
�
�z�=2 6 Z 6 z�=2

�
= 1� �:

This is clear from the familiar picture in Figure 13.2.4.
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To �nd a con�dence interval for � with con�dence level 1��; or equiva-
lently, 100 (1� �)%; we can follow through the derivation in section 13.2.1,
replacing 1:96 by z�=2 to give

Pr
�
�X � z�=2 SE

�
�X
�
6 � 6 �X + z�=2 SE

�
�X
�	
= 1� �:

That is, the random variables CL and CU de�ning the interval estimator are

CL = �X � z�=2 SE
�
�X
�
; CU = �X + z�=2 SE

�
�X
�



13.2. INTERVAL ESTIMATORS 159

The sample value of this con�dence interval (�the�con�dence interval)
is then

�x� z�=2 SE
�
�X
�
:

Using the example of the previous section, we can calculate, for example, a
99% con�dence interval for �: Here,

1� � = 0:99; � = 0:01; �=2 = 0:005;

and then from tables,

z�=2 = 2:58:

This gives the lower and upper con�dence bounds as

[cL; cU ] = �x� z�=2 SE
�
�X
�

= 18� 2:58
r
5

50
= 18� 0:82
= [17:18; 18:82] :

Notice that the measure of sampling variability has increased from 0:62
for a 95% con�dence interval to 0:82 for a 99% con�dence interval. This
illustrates the general proposition that the con�dence interval gets wider
as the con�dence coe¢ cient is increased. There has been no change in the
precision of estimation here.

Why the use of 1 � � in the probability statement underlying the con-
�dence interval? The random variables CL and CU are designed here to
make

Pr (� 2 [CL; CU ]) = 1� �

and therefore

Pr (� =2 [CL; CU ]) = �:

This probability that � does not belong to the con�dence interval turns
out to be very important for the topic of hypothesis testing which will be
discussed in Section 14. As a result, � is considered to be �important�, and
the con�dence coe¢ cient is then stated in terms of �: Again, this is largely
due to convention.

13.2.5 A small table of percentage points

For the N (0; 1) distribution, it is possible in principle to �nd the appro-
priate z� or z�=2 from the table of the standard normal distribution in the
Appendix. But, this soon becomes tiresome. The table below gives z�=2
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to four decimal places for a range of common con�dence levels. With some
care, it can be used for z� as well - this will be useful for later work.

1� � � �=2 z�=2

0:80 0:2 0:10 1:2816

0:90 0:1 0:05 1:6449

0:95 0:05 0:025 1:9600

0:98 0:02 0:01 2:3263

0:99 0:01 0:005 2:5758

Figure 13.2.5 shows the notation graphically.
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13.2.6 A small but important point

We have assumed that a random sample of size n has been drawn from a
normal population, where X s N

�
�; �2

�
; and it is clear that an important

role in a con�dence interval for � is played by

SE
�
�X
�
=

r
�2

n
:

This standard error has to be known in order to calculate the interval esti-
mate. But, it has frequently been emphasised that population parameters
are in general unknown. So, assuming that �2 is known has to be seen
as an unrealistic but simplifying assumption. This assumption allows us to
see the principles behind the construction of an interval estimator or con-
�dence interval without other complications. We shall have to investigate
the consequences of relaxing this assumption.
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13.3 The t distribution

What happens if the parameter �2 is unknown, as is likely to be the case
usually? Underlying the construction of a 95% con�dence interval for �

is the sampling distribution for �X; �X s N
�
�;
�2

n

�
and a true probability

statement,

Pr

0BB@�1:96 6 �X � �r
�2

n

6 1:96

1CCA = 0:95:

This is still true when �2 is unknown, but it is of no help, since we cannot
construct the con�dence interval (i.e. interval estimate)

�x� 1:96
r
�2

n
:

In the light of the discussion starting in Section 12 on the role of estima-
tion in statistics, there is what seems to be an obvious solution. This is to
replace the unknown �2 by an estimate, s2; derived from the same sample
as �x: However, one has to be a little careful. First, s2 is the estimate of the
(population) variance , and is the sample value of the estimator S2: The
probability statement above is based on the fact that

Z =
�X � �r
�2

n

s N (0; 1) ;

and in this one has to replace �2 by S2; not by s2: In e¤ect, we are talking
about the estimator and the estimate of SE

�
�X
�
:

� the estimator of SE
�
�X
�
is

r
S2

n
;

� the estimate of SE
�
�X
�
is

r
s2

n
:

Sometimes the estimator of SE
�
�X
�
is denoted cSE � �X� ; with estimatecese � �X� ; but these are a bit clumsy to use in general.

13.4 Using cSE � �X�
So, instead of using

Z =
�X � �
SE
�
�X
� s N (0; 1) ;
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we should use

T =
�X � �cSE � �X� :

This seems like a simple solution, but unfortunately it is not an innocuous
solution. This is because the distribution of the random variable T combines
two sources of randomness, �X and S2: As a result, the distribution of T is
NOT N (0; 1) :

The distribution of T was discovered by a statistician called W.S. Gossett
who worked at the Guinness Brewery in Dublin, and wrote under the pen
name �Student�. The distribution of T is called Student`s t distribution,
or more commonly, just the t distribution. This distribution depends on a
parameter, just like other distributions: here, the parameter is called the
degrees of freedom. Before discussing the properties of this distribution, we
summarise the distribution statement:

� in random sampling from N
�
�; �2

�
;

T =
�X � �cSE � �X� s tn�1;

� the t distribution with n� 1 degrees of freedom.

The presence of n� 1 degrees of freedom can be explained in a number
of ways. One explanation is based on the expression for the estimator S2 :

S2 =
1

n� 1

nX
i=1

�
Xi � �X

�2
:

Here, the divisor n � 1 in this expression leads to the degrees of freedom
for T . This is actually the main justi�cation for using a divisor n � 1 in
a sample variance S2 rather than n; although using n � 1 also leads to an
unbiased estimator.

13.4.1 Properties of the t distribution

In general, the parameter � of the t distribution is a positive real number,
although in most applications, it is an integer, as here:

� = n� 1:

Unlike many (population) parameters, this one has a known value once the
sample size is known. Figure 13.4.1 shows a plot of the N (0; 1) distribution,
a t distribution with � = 2 and a t distribution with � = 5 degrees of
freedom.

It can be seen from Figure 13.4.1 that the t distribution is
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� symmetric about zero, like the N (0; 1) distribution

� more dispersed than N (0; 1) ;

� as � increases, approaches the N (0; 1) distribution.

One can show that if
T s t� ;

then
E [T ] = 0; var [T ] =

�

� � 2 :

So, the variance is only de�ned for � > 2; and

var [T ] > 1;

which explains the extra dispersion of the t distribution relative to N (0; 1) :

13.4.2 Comparing the t and N (0; 1) distributions

One way of doing this is to compare some �typical� probabilities. The
di¢ culty with this is that one cannot produce a table of t distribution prob-
abilities

Pr (T 6 t) for T s t�
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to compare with those for

Pr (Z 6 z) for Z s N (0; 1) :

there would have to be a table for each value of �:
The alternative is to use a program like EXCEL. The implication is

that one has to understand the appropriate EXCEL commands. One soon
discovers that EXCEL works di¤erently for the N (0; 1) distribution and the
t� distributions. First,

Pr (Z 6 1:96) = normsdist(1.96).

Next, the EXCEL commands for computing t distribution probabilities are

tdist(1.96,df,1) or tdist(1.96,df,2).

However, the �rst of these is

Pr (T > 1:96) = tdist(1.96,df,1),

whilst the second is

Pr (jT j > 1:96) = Pr (T < �1:96) + Pr (T > 1:96)
= tdist(1:96; df; 2):

In e¤ect, EXCEL gives �lower tail�probabilities for N (0; 1) ; but upper tail
probabilities for t� ; which is a little confusing.

There is another point to bear in mind when using EXCEL, and which
becomes relevant later in the course. In trying to compute

Pr (T > t) = tdist(t; df; 1);

EXCEL only allows positive values of t: So, to calculate, for example,

Pr (T > �1:96) ;

an appeal to symmetry is required �rst to give

Pr (T > �1:96) = Pr (T 6 1:96) = 1� Pr (T > 1:96) ;

and the latter probability is obtained from EXCEL.
The following table gives some numerical values:

Pr (T 6 1:96) Pr (T > 1:96) Pr (jT j > 1:96)
t2 0:9055 0:0945 0:1891
t4 0:9464 0:0536 0:1073
t40 0:9715 0:0285 0:0570
t100 0:9736 0:0264 0:0528

N (0; 1) 0:9750 0:0250 0:0500
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One can see that the tail probabilities for the t� distribution actually ap-
proach those of the N (0; 1) distribution as � increases, although the rate of
convergence is quite slow in fact. Conventionally, one treats N (0; 1) as if it
were t1; as in the tables in the Appendix to this book.

An alternative comparison is in terms of percentage points - values t and
z such that, for example,

Pr (T 6 t) = 0:975 for T s t� ;
Pr (Z 6 z) = 0:975 for Z s N (0; 1) :

More generally, z� is the percentage point such that

Pr (Z > z�) = �;

and, for the t distribution, t�;� is the percentage point such that

Pr (T > t�;�) = �:

The Appendix to this book has a table giving values of t�;� for various
combinations of � and � such that

Pr (T 6 t�;�) = 1� �:
Other texts have similar tables, but may employ (for example)

Pr (T > t�;�) = �:

As usual, EXCEL is di¤erent: its function

tinv (�; df)

gives t�;� such that
Pr (jT j > t�;�) = �:

So, EXCEL always de�nes its percentage point by the probability in both
tails.

The table below shows some of these values:

Appendix Other Texts tinv(0.05,df)
Pr (T 6 t�;0:025) Pr (T > t�;0:025) Pr (jT j > t�;0:025)

t2 4:303 4:3 4:303
t5 2:571 2:57 2:571
t40 2:021 2:02 2:021
t100 1:984 1:98 1:984

N (0; 1) 1:96 1:96 1:96

One can see the same sort of e¤ects: the value that puts 2:5% in the upper
tail of a t� distribution approaches that for the N (0; 1) distribution. There
is a conventional textbook presumption that for � su¢ ciently large, one can
use the N (0; 1) percentage points as good enough practical approximations
to those from the t� distribution. The �gure � = 40 is often mentioned for
this purpose.
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13.4.3 Con�dence intervals using the t distribution

Suppose that a 100 (1� �)% interval estimator or con�dence interval is
wanted for the mean of a normal distribution, N

�
�; �2

�
; where �2 is un-

known. A random sample of size n will be drawn from this distribution. In
Section 13.2.1, the facts that

�X s N

�
�;
�2

n

�
;

Z =
�X � �r
�2

n

s N (0; 1)

were used to derive the interval estimator from the probability statement

Pr
�
�z�=2 6 Z 6 z�=2

�
= 1� �;

where
Pr
�
Z > z�=2

�
= �=2:

We cannot use this argument when �2 is unknown. Instead, �2 is re-
placed by its estimator S2; and the random variable

T =
�X � �r
S2

n

s tn�1

used rather than Z: The replacement probability statement is

Pr
�
�tn�1;�=2 6 T 6 tn�1;�=2

�
= 1� �;

in the form

Pr

�
�tn�1;�=2 6

�X � �
S=
p
n
6 tn�1;�=2

�
= 1� �:

Exactly the same sequence of manipulations as described in Section 13.2.1
is used to generate the probability statement which de�nes the endpoints of
the interval estimator as

Pr

 
�X � tn�1;�=2

r
S2

n
6 � 6 �X + tn�1;�=2

r
S2

n

!
= 1� �:

That is, the interval estimator or con�dence interval is

[CL; CU ] =

"
�X � tn�1;�=2

r
S2

n
; �X + tn�1;�=2

r
S2

n

#

= �X � tn�1;�=2

r
S2

n
:
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The sample value of this con�dence interval (�the�con�dence interval)
is then

�x� tn�1;�=2

r
s2

n
:

notice the use of the sample value s2 of S2 in this expression. This can be
usefully compared with the corresponding con�dence interval for the case
where �2 is known:

�x� z�=2

r
�2

n
:

Two things are di¤erent in the t based con�dence interval: the use of tn�1;�=2
rather than z�=2; and the use of s2 rather than �2:

13.4.4 Example

This is the same as that from Section 13.2.3, but now assuming that the
population variance �2 is unknown. Household income in £ �000 is X s
N
�
�; �2

�
; where both � and �2 are unknown. A random sample of size

n = 5 (previously 50) yields �x = 18 (as before) and s2 = 4:5: Here,

T =
�X � �r
S2

n

s t4:

For a 95% con�dence interval for �; we need the percentage point t4;0:025
such that

Pr (T 6 t4;0:025) = 0:975:
From the tables in the Appendix this is found to be

t4;0:025 = 2:776:

The con�dence interval for � is then

�x� tn�1;�=2

r
s2

n
= 18� (2:776)

r
4:5

5
= 18� 2:634
= [15:366; 20:634] :

For comparison with the original example, if we had used �2 = 5 with a
sample of size 5; the resulting normal-based con�dence interval would be

�x� z�=2

r
�2

n
= 18� (1:96)

r
5

5
= 18� 1:96
= [16:04; 19:96] :

This normal-based con�dence interval is narrower than the t based one: this
is the consequence of the extra dispersion of the t distribution compared
with the N (0; 1) distribution.
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13.5 Realationships between Normal, t and �2 dis-
tributions

As this point we o¤er a digression an report some well known properties that
link normal, Student t and �2 distributions. Some of the following results
have been discussed above, butball are included for completeness:

1. Let X � N(�; �2); i.e., a normally distributed random variable with
mean � and variance �2: Then Z = (X � �) =� � N(0; 1); standard
normal, andW = Z2 � �21; chi-squared with 1 degree of freedom. Gen-
erally, �2v denotes a chi-squared distribution with v degrees of freedom.

2. Let Xi; i = 1; : : : ; n; be iid (independently and identically distributed)
N
�
�; �2

�
variates, then

nX
i=1

Z2i � �2n;

where Zi = (Xi � �) =�; and

1

�2

nX
i=1

�
Xi � �X

�2 � �2n�1;
where �X = 1

n

Pn
i=1Xi:

Furthermore,
p
n
�
�X � �

�
=� � N(0; 1)

and

p
n
�
�X � �

�
=s � tn�1; Student-t distribution with n�1 degrees of freedom,

where s2 = 1
n�1

Pn
i=1(Xi � �X)2 is distributed independently of �X:

3. Let Z � N(0; 1) independently of Y � �2v: Then, S = Zp
Y=v

� tv:

4. Let W � �2m independently of V � �2p; then U =W + V � �2m+p and
R = W=m

V=p � Fm;p; i.e., R has an F-distribution with m and p degrees
of freedom. Hence,

(a) R�1 � Fp;m; and,

(b) using previous results, if S � tq then S2 � F1;q:
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13.6 Large Sample Con�dence Intervals

The discussion so far has been based on the idea that we are sampling from
a normal distribution, N

�
�; �2

�
; in which both � and �2 may have to be

estimated. In e¤ect, since we have no way of knowing for sure, we assume
that we are sampling from a normal distribution. Assumptions need not be
true: what can be done if the assumption of normality is false?

13.6.1 Impact of Central Limit Theorem

The usual sampling distribution of the sample mean �X also assumes sam-
pling from a normal distribution. In Section 11.3.7, the e¤ect of sampling
from a non-normal distribution was discussed. Provided that one draws a
random sample from a population with mean � and variance �2; the Central
Limit Theorem assures us that

�X � �
�=
p
n
s N (0; 1) approximately,

or, equivalently,

�X s N
�
�;
�2

n

�
approximately.

There is the presumption that the quality of the approximation improves as
n!1; that is, as the sample size increases. The larger the n; the better.

If �2 is known, then we are approximately back in the context of
Section 13.2.1. That is, we proceed as if �2 is known, and simply qualify
the con�dence level as an approximate con�dence level.

If �2 is unknown, we can use S2 to estimate �2: However, unless we
sample from a normal distribution, it will not be true that

T =
�X � �r
S2

n

s tn�1:

Rather,

T =
�X � �r
S2

n

s N (0; 1) approximately.

That is, replacing �2 by an estimator still allows the large sample normal
approximation to hold. Only an intuitive justi�cation for this can be given
here. This is simply that as n!1;

S2 ! �2 :

S2 gets so close to �2 that its in�uence on the distribution of T disappears.
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13.6.2 The large sample con�dence interval for �

From the initial probability statement

Pr

0BB@�z�=2 6 �X � �r
S2

n

6 z�=2

1CCA = 1� � approximately,

we derive, as in Section 13:2:1; the interval estimator or con�dence interval

[CL; CU ] = �X � z�=2

r
S2

n

having approximate con�dence level 100 (1� �)%: The sample value of
this con�dence interval is

�x� z�=2

r
s2

n
:

For an example, consider that of Section 13:2:3; but now not assuming
that sampling takes place from a normal distribution. We assume that the
sample information is n = 50; �x = 18 and s2 = 4:5: Then, an approximate
95% con�dence interval is

�x� z�=2

r
s2

n
= 18� 1:96

r
4:5

50
= 18� 0:588
= [17:412; 18:588] :

In general, how this compares with the exact con�dence interval based on
knowledge of �2 depends on how good s2 is as an estimate of �2: Nothing
can be said about this usually.

13.6.3 Con�dence intervals for population proportions

In Section 12.3, estimation of a population proportion � was discussed. To
revise this, a random sample is obtained from the distribution of a Bernoulli
random variable, a random variable X taking on values 0 and 1 with prob-
abilities 1 � � and � respectively. The sample mean �X here is the random
variable representing the sample proportion of 10s; and so is usually denoted
P; �the�sample proportion. It was shown in Section 12.3 that the sampling
distribution of P is related to a Binomial distribution, and that the Central
Limit Theorem can be used to provide an approximate normal sampling
distribution.

Since

E [P ] = �; var [P ] =
� (1� �)

n
;
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P � �p
var [P ]

s N (0; 1) approximately.

So, one could hope to use this to provide an approximate con�dence interval
for �: There is a minor complication here in that var [P ] depends on the
unknown parameter �; but, there is an obvious estimator (P ) available which
could used to provide an estimator of var [P ] :

Following the previous reasoning, we argue that

P � �r
P (1� P )

n

s N (0; 1) approximately.

By analogy with the case of the population mean, an approximate 100 (1� �)%
con�dence interval for � is

[CL; CU ] = P � z�=2

r
P (1� P )

n
;

with sample value

p� z�=2

r
p (1� p)

n
:

13.6.4 Example

A random sample of 300 households is obtained, with 28% of the sample
owning a DVD player. An approximate 95% con�dence interval for the
population proportion of households owning a DVD player is

p� z�=2

r
p (1� p)

n
= 0:28� (1:96)

r
0:28 (1� 0:28)

300
= 0:28� 0:0508
= [0:229; 0:331] :

For such an apparently large sample size, this is quite a wide con�dence
interval. Better precision of estimation would require a larger sample size.

13.7 Exercise 7

1. You are interested in the mean duration of a spell of unemployment for
currently unemployed women in a particular city. It is known that the
unemployment duration of women is normally distributed with vari-
ance 129:6. The units of measurement for the variance are therefore
months squared. You draw a random sample of 20 unemployed women,
and they have an average unemployment duration of 14:7 months. Ob-
tain a 98% con�dence interval for the population mean unemployment
duration for women.
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2. A simple random sample of 15 pupils attending a certain school is
found to have an average IQ of 107:3 with a sample variance of 32:5:

(a) Calculate a 95% con�dence interval for the unknown population
mean IQ, stating any assumptions you need to make. Interpret
this interval.

(b) Explain whether you would be happy with a parent�s claim that
the average IQ at the school is 113:

3. An internet service provider is investigating the length of time its
subscribers are connected to its site, at any one visit. Having no prior
information about this, it obtains three random samples of these times,
measured in minutes. The �rst has sample size 25, the second sample
size 100 and the third 250. The sample information is given in the
table below:

n �x s2

Sample 1 25 9:8607 2:1320
Sample 2 100 9:8270 2:1643
Sample 3 250 9:9778 2:0025

(a) Calculate a 95% con�dence interval for each sample: state any
assumptions you make.

(b) Do the con�dence intervals get narrower as the sample size in-
creases? Why would you expect this?

4. In an opinion poll based on 100 interviews, 34 people say they are not
satis�ed with the level of local Council services. Find a 99% con�dence
interval for the true proportion of people who are not satis�ed with
local Council services.

5. Explain the di¤erence between

(a) an interval estimator and an interval estimate;

(b) an interval estimate and a con�dence interval.

6. Which of these interpretations of a 95% con�dence interval [cL; cU ] for
a population mean are valid, and why?

(a) � lies in the interval [cL; cU ] with probability 0:95;

(b) in repeated sampling, approximately 95% of con�dence intervals
will contain �;

(c) � lies in the interval [CL; CU ] with probability 0:95;

(d) the con�dence interval [cL; cU ] contains a point estimate of � and
an allowance for sampling variability;
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(e) [cL; cU ] displays the likely range of values of �:

(f) [cL; cU ] shows how precise the estimator of � is expected to be.

13.8 Using EXCEL for the t distribution

Some of the information in Section 13.4.2 is deliberately repeated here.
The table for percentage points of the t distribution in the Appendix

refers only to some speci�c probabilities and degrees of freedom. EXCEL
has no such restrictions, either in calculating probabilities or percentage
points.

Use the Paste Function and select Statistical from the Function
Category box.

� Select tdist in the Function Name box to obtain probabilities of
either the one-tailed form Pr (T > t) = � or of the two-tailed form
Pr (jT j > t) = �: In the dialogue box you supply the value t (which
must be nonnegative), the degrees of freedom �; and also 1 for a one
tailed probability or 2 for a two tailed probability. In each case, the
probability � is returned. Symmetry of the t distribution allows prob-
abilities for t < 0 to be obtained.

� Select tinv in the Function Name to obtain the value t�;�=2 > 0
such that

Pr
�
T > t�;�=2

�
= �=2

or
Pr
�
jT j > t�;�=2

�
= �:

In the Dialogue Box you supply the probability (i.e. the value of �)
and the degrees of freedom �: Note that the function assumes a two-
tailed form, so that the probability must be doubled if a one tailed
probability is required. Once again, symmetry allows values t�;�=2 to
be obtained.
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Chapter 14

HYPOYHESIS TESTING

14.1 Introduction

Despite the fact that population parameters are usually unknown, we now
know how to estimate population means, variances and proportions. The
population mean is the most important in this course, and we have seen
how to obtain both point and interval estimators and estimates of this pa-
rameter, whether or not sampling takes place from a normal distribution.
It is very common for an investigator to have some sort of preconception or
expectation (in the ordinary sense of the word) about the value of a para-
meter, say the mean, �: Statisticians usually talk about having a hypothesis
about the value of the parameter.

We have already seen a number of examples of this. In Section 11.3.6,
there is an example which asserts that IQ tests are designed to produce test
results which are distributed as N (100; 400) : In e¤ect, this is equivalent
to saying that IQ test results are drawings from N (�; 400) ; and it is be-
lieved that � = 100: When applied to a speci�c population of individuals,
this hypothesis may or may not be true, and an investigator may want to
decide whether sample evidence is, in some sense to be discussed further,
compatible with, or in favour of, this hypothesis.

Another example concerns the distribution of household incomes (in £
�000) used in Section 12.2.5, which is supposed be distributed as N (20; 5) :
Here, household incomes are drawings from N (�; 5) ; with the hypothesis
that � = 20: Again, this may or may not be true, and sample evidence can
again to used to �test�compatibility with this hypothesis.

It is important to notice that an investigator is �deciding�whether the
sample evidence is compatible with or favourable to the hypothesis. As
usual, since population parameters are unknown, the investigator may decide
wrongly - and will never know this.

How could one �decide�whether a hypothesis is �true�, in this sense?
The �rst thing to do is to introduce notation that distinguishes the supposed

175
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value from the actual population parameter value �: Call the hypothesised
value �0 (the reason for this strange notation will be explained in Section
14.3.1).

14.2 Con�dence intervals again

If we sample from N
�
�; �2

�
; with �2 again assumed known for simplicity, a

100 (1� �)% con�dence interval is a pair of random variables CL; CU such
that

Pr (� 2 [CL; CU ]) = 1� �; Pr (� =2 [CL; CU ]) = �;

where

CL = �X � z�=2

r
�2

n
; CU = �X + z�=2

r
�2

n
:

In Section 13.2.2, interpretations of the corresponding interval estimate
(�the� con�dence interval) [cL; cU ] are discussed. There it is emphasised
that such a con�dence interval is really augmenting the point estimate �x of
� with a measure of sampling variability.

14.2.1 Rejection criteria

Another possible interpretation is that the interval estimate displays, in
some sense, the �likely range of values of �":

If we accept this interpretation uncritically for the moment, one way of
making a decision that the population parameter � is equal to the hypoth-
esised value �0, so that � = �0; is to ask if �0 is contained in the interval
estimate. That is, decide �yes�if

�0 2 [cL; cU ]

and �no�if
�0 =2 [cL; cU ] ;

where

cL = �x� z�=2

r
�2

n
; cU = �x+ z�=2

r
�2

n
:

The more usual language here is to accept or reject the hypothesis.
To reject the hypothesis � = �0; we need �0 to satisfy

either �0 < cL = �x� z�=2

r
�2

n
or �0 > cU = �x+ z�=2

r
�2

n
;

These can be rearranged to give the rejection criterion in terms of �x as

either �x > �0 + z�=2

r
�2

n
or �x < �0 � z�=2

r
�2

n
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or even as

either
�x� �0p
�2=n

> z�=2 or
�x� �0p
�2=n

< �z�=2:

This last statement can be compressed even further: put

z =
�x� �0p
�2=n

:

Then the rejection criterion

either z > z�=2 or z < �z�=2:

is actually equivalent to

jzj > z�=2:

14.2.2 Critical values

The values

�0 � z�=2

r
�2

n
or �0 + z�=2

r
�2

n

against which �x is compared are called critical values, and will be denoted
�xL; �xU :

�xL = �0 � z�=2

r
�2

n
; �xU = �0 + z�=2

r
�2

n
:

The values �xL; �xU are critical because they are the boundary between ac-
cepting and rejecting the hypothesis.

In the same way, the values �z�=2 and z�=2 are critical values: if z <
�z�=2 or z > z�=2; the hypothesis is rejected. Notice that these critical
values are the percentage points of the N (0; 1) distribution, whereas the
critical values �xL; �xU are derived from these percentage points.

To summarise: deciding to reject the hypothesis � = �0 if

�0 =2 [cL; cU ] ;

is equivalent to rejecting if

� �x > �xU = �0 + z�=2

r
�2

n
or �x < �0 � z�=2

r
�2

n

or if

� jzj > z�=2:
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In words, we reject if �x is too large relative to the critical value �xU =

�0+z�=2

r
�2

n
or too small relative to the critical value �xL = �0�z�=2

r
�2

n
;

or if jzj is too large relative to z�=2:
Using the example from Section 13.2.3, where a sample of size 50 is

drawn from N (�; 5) with �x = 18; we found that the 95% con�dence interval
was

[cL; cU ] = [17:38; 18:62] :

If the hypothesised value of � is � = �0 = 20; we can see immediately that
this should be rejected. We can �nd the critical values as

�xL = �0 � z�=2

r
�2

n
= 20� (1:96)

r
5

50
= 19:3802;

�xU = �0 + z�=2

r
�2

n
= 20 + (1:96)

r
5

50
= 20:6198:

Since
�x = 18 < �xL = 19:3802;

we con�rm the rejection.
Similarly, we can �nd

z =
�x� �0p
�2=n

=
18� 20p
5=50

= �6:3246;

which clearly satis�es
z < �z�=2 = �1:96:

14.2.3 Properties of the rejection criteria

To investigate these properties, we can use the repeated sampling interpre-
tation of a con�dence interval given in Section 13.2.2. If random samples
are repeatedly drawn from N

�
�0; �

2
�
; then approximately 100 (1� �)% of

these interval estimates will contain �0: The use of the hypothesised value in
the normal distribution here is deliberate: only under this condition will the
repeated sampling statement be true. This is also equivalent to the truth of
the probability statement underlying the interval estimator.

So, we can say that if we sample from X s N
�
�0; �

2
�
; so that �X s

N

�
�0;

�2

n

�
; we will have

Pr (�0 2 [CL; CU ]) = 1� �; Pr (�0 =2 [CL; CU ]) = �;

with

CL = �X � z�=2

r
�2

n
; CU = �X + z�=2

r
�2

n
:



14.3. HYPOTHESES 179

Notice the implication: even when the hypothesised value �0 is the �true�
value of �; there is some chance, �; that we will make an incorrect decision.
This is an inherent feature of the use of an interval estimate argument to
decide whether to accept or reject the hypothesis � = �0:

In e¤ect, we have chosen a procedure which will reject the hypothesis
� = �0 with probability � even when it is true. Ideally, one would like this
probability to be small.

This probability of rejection can also be expressed as an �X or Z proba-
bility. For, the probability

Pr (�0 2 [CL; CU ]) = 1� �

is derived, as in Section 13.2.4, from the probability

Pr
�
�z�=2 6 Z 6 z�=2

�
= 1� �;

with

Z =
�X � �0
�=
p
n
;

and Z s N (0; 1) when � = �0: The corresponding probability for rejecting
� = �0;

Pr (�0 =2 [CL; CU ]) = �;
is then

Pr
�
jZj > z�=2

�
= �:

Another arrangement of the �rst Z probability is

Pr

 
�0 � z�=2

r
�2

n
6 �X 6 �0 + z�=2

r
�2

n

!
= 1� �;

with rejection probability version using the critical values �xL; �xU ;

Pr

( 
�X < �0 � z�=2

r
�2

n

!
[
 
�X > �0 + z�=2

r
�2

n

!)
= Pr

��
�X < �xL

�
[
�
�X > �xU

�	
= �:

What can be said about the value of � if � = �0 does not appear to be
true (i.e. is rejected, using sample information)? At this point, we need to
be a bit more formal.

14.3 Hypotheses

In the discussion of the previous two sections, certain words, hypothesis, test,
decide, accept, reject, were used as if we were referring to their ordinary
meaning. However, these words also belong to the jargon of that part of
statistical inference called hypothesis testing: their speci�c meaning in this
context will become clear.
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14.3.1 Null hypotheses

A �hypothesis� appears to be a claim about the value of some population
parameter: for example

� = 20; � = 0:45; �2 = 1:

It can also be much more general than this, and refer to functions of pop-
ulation parameters. For example, we may obtain a random sample from
a population with population mean �1; and then a random sample from
another population with mean �2; and ask whether

�1 = �2; equivalently, �1 � �2 = 0:

However, these examples would usually be called null hypotheses: the
last example shows the link between the adjective null and the numerical
value 0: The earlier examples can be rephrased to emphasise this as

�� 20 = 0; � � 0:45 = 0; �2 � 1 = 0:

So, a null hypothesis expresses the preconception or �expectation�(com-
pare the language of Section 14.1) about the value of the population para-
meter. There is a standard, compact, notation for this:

H0 : � = �0

expresses the null hypothesis that � = �0:
Deciding whether or not � = �0 on the basis of sample information is

usually called testing the hypothesis. There is actually a question about
what sample evidence should be used for this purpose. This issue is has to
do with the question of how the true population parameter � is related to
the �null hypothesis value��0 if � is not equal to �0:

14.3.2 Alternative hypotheses

The alternative hypothesis de�nes this relationship. The possible alter-
natives to H0 are (only one of)

� > �0; � < �0; � 6= �0:

Formal statements of these as hypotheses are

HA : � > �0

or
HA : � < �0

or
HA : � 6= �0:
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Here, HA stands for the alternative hypothesis. In some textbooks, this is
denoted H1; but is still called the alternative hypothesis.

Notice that the null and alternative hypotheses are expected to be mu-
tually exclusive: it would make no sense to reject H0 if it was also contained
in HA!

If the null hypothesis is rejected, then we are apparently deciding to
�accept�the truth of the alternative hypothesis HA: Notice that HA gives a
range of values of � : it does not point to any speci�c value. So, in rejecting
the null hypothesis, we are not deciding in favour of another speci�c value
of �:

14.3.3 Example

Which sort of alternative hypothesis should be chosen? This all depends
on context and perspective. Suppose that a random sample of jars of jam
coming o¤ a packing line is obtained. The jars are supposed to weigh, on
average, 454gms. You have to decide, on the basis of the sample evidence,
whether or not this is true. So, the null hypothesis here is

H0 : � = 454:

As a jam manufacturer, you may be happy to get away with selling, on
average, shortweight jars, since this gives more pro�t, but be unhappy at
selling, on average, overweight jars, owing to the loss of pro�t. So, the
manufacturer might choose the alternative hypothesis

HA : � > 454:

A consumer, or a trading standards conscious jam manufacturer, might be
more interested in underweight jars, so the alternative might be

HA : � < 454:

A mechanic from the packing machine company might simply want evidence
that the machine is not working to speci�cation, and would choose

HA : � 6= 454

as the alternative.

14.3.4 Sides and Tails

Alternative hypotheses are often called one sided or one tailed, two sided
or two tailed.

� HA : � > �0 is an upper one tailed (or sided) hypothesis
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� HA : � < �0 is a lower one tailed (or sided) hypothesis

� HA : � 6= �0 is a two tailed (or sided) hypothesis.
One can see that upper and lower come from the direction in which
the �arrow�of the inequality points.

14.4 Types of Error

The rejection criteria based on a con�dence interval argument in Section
14.2.1 are really designed for testing the hypotheses

H0 : � = �0

against
HA : � 6= �0;

as we shall shortly see. The point to be derived from the discussion in
Section 14.2.3 is that even when the null hypothesis H0 is true, i.e.
� = �0; there is some chance of rejecting it, that is, of denying its truth.
This is an �error�. It is also true, although not apparent from the discussion
in Section 14.2.3, that when H0 is not true, and HA is therefore presumed
to be true, there is some chance that one will accept (more precisely, not
reject) H0: This too is an error, of a di¤erent sort. These points are also
true in the case of one-tailed alternative hypotheses.

These errors are called Type I and Type II errors, and can be sum-
marised as:

� a Type I error is incorrectly rejecting the null hypothesis;

� a Type II error is incorrectly accepting the null hypothesis.

It is also possible to make correct decisions, and the possible combina-
tions of correct and incorrect decisions are laid out in the following table:

Decision
Truth H0 accepted H0 rejected
H0 true correct decision Type I error
H0 false Type II error correct decision

The objective in designing a procedure to test an H0 against an HA -
i.e. decide whether to accept H0 or to reject H0; is to ensure that a Type
I error does not occur to often. More precisely, the objective is to design
a procedure which �xes the probability of a Type I error occurring at a
prespeci�ed level, �; which is small and therefore presumably tolerable. In
the new terminology, the procedure based on a con�dence interval described
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in Section 14.2.3 has, by construction, a Type I error probability of 1 minus
the con�dence level, 1� �; used: i.e. a Type I error probability of �:

Conventionally, the Type I error probability � is set to 5%; or sometimes
1%: For the moment, we shall simply accept the convention. More will be
said about this in Section 14.8.

Once a procedure is designed in this way, one can determine in principle
the probability of the Type II error for each value of � that could be true
under the alternative hypothesis. For a given sample size, n; this probability
cannot be controlled, although it can be reduced by increasing n. It is also
true that for a given value of � under HA; as the Type I error probability �
is made smaller, the corresponding Type II error probability increases.

14.4.1 Example

This classic example is intended to sharpen the contrast between the two
sorts of error. In a court of law, the accused is either innocent or guilty, and
is usually presumed innocent until proven guilty. In terms of hypotheses,
this suggests that the null hypothesis is

H0 : accused is innocent

with the implied alternative

HA : the accused is guilty.

The court makes a decision as to whether the accused is innocent or guilty,
but may make a mistake:

� a Type I error, rejecting H0 when it is true, consists of convicting an
innocent person;

� a Type II error, accepting H0 when false, consists of acquitting a guilty
person.

Which of these two errors is the most serious? The standard approach to
hypothesis testing presumes that the Type I error is the most important,
as noted above. The legal system also appears to take this view.

14.5 The traditional test procedure

Suppose that we wish to test the null hypothesis

H0 : � = �0:

The traditional test procedure (sometimes called the classical test proce-
dure) is based on a simple principle: is the value of �x too extreme relative
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to the value �0 to be compatible with the truth of this null hypothesis? If
the answer is yes, reject the null hypothesis. Two questions arise naturally
here. What is extreme? What is too extreme?

The �rst question is equivalent to asking in which direction we should
look for extreme values. This information is provided to us by the alternative
hypothesis we specify. So, in the case of a

� lower one tailed alternative, HA : � < �0; �extreme�is ��x too small
relative to �0";

� upper one tailed alternative, HA : � > �0; �extreme�is ��x too large
relative to �0";

� two tailed alternative, HA : � 6= �0; �extreme�is ��x too small or too
large relative to �0":

Recall that the con�dence interval procedure of Section 14.2.1 had the
latter as the rejection criteria, and so can be seen to be appropriate for a
test against a two-tailed alternative:

H0 : � = �0 against HA : � 6= �0:

The rejection criterion here uses the critical values �xL and �xU and critical
region

�x < �xL = �0 � z�=2

r
�2

n
or �x > �xU = �0 + z�=2

r
�2

n
:

This rejection criterion has the property that

Pr
��
�X < �xL

�
[
�
�X > �xU

�	
= �;

the probability of a Type I error occurring.
It is the choice of Type I error probability which de�nes the concept of

�how extreme�for the hypothesis testing procedure. In fact, the critical val-
ues �xL and �xU are designed to generate the speci�c Type I error probability
�:

14.5.1 An upper one-tailed test

In this light, and without reference to the con�dence interval case, we con-
struct a test procedure for an upper one tailed test,

H0 : � = �0 against HA : � > �0

for the case of sampling from N
�
�; �2

�
with �2 known. According to the

arguments above, we will reject this null hypothesis if the sample value �x is
too large, where this is determined by a critical value, �xU .
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This critical value �xU de�nes an acceptance region and a critical or
rejection region, with the obvious idea that if �x falls in the acceptance
region, H0 is accepted, whilst if it falls in the critical or rejection region, H0
is rejected. Clearly, the acceptance region is

(�1; �xU ]

and the rejection region is
(�xU ;1):

The critical value �xU is determined by the requirement that

Pr
�
�X > �xU jH0 true

�
= �;

i.e. that the Type I error probability, or level of signi�cance for short,
be set to �: Notice the importance of the requirement �H0 true�: it means
that in computing this probability, or more accurately determining �xU from
it, we use the sampling distribution of �X under the null hypothesis,

�X s N
�
�0;

�2

n

�
:

Standardising in the usual way, we get

Pr

� �X � �0
�=
p
n
>
�xU � �0
�=
p
n
jH0 true

�
= �;

or

Pr

�
Z >

�xU � �0
�=
p
n
jH0 true

�
= �

for

Z =
�X � �0
�=
p
n
;

Since Z s N (0; 1) ; this implies that

�xU � �0
�=
p
n
= z�

where Pr (Z > z�) = �; which gives

�xU = �0 +
�p
n
z�:

One can also see in this argument an alternative approach, which is to
compute the sample value of Z : if

z =
�x� �0
�=
p
n
> z�;
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reject the null hypothesis. This works simply because the inequalities

�x > �0 +
�p
n
z�

and
z =

�x� �0
�=
p
n
> z�

are equivalent.
To summarise: in sampling from N

�
�; �2

�
with �2 known, a test of the

hypotheses
H0 : � = �0 against HA : � > �0

at level of signi�cance � is given by rejecting H0 if

� �x > �xU = �0 +
�p
n
z�

or

� z = �x� �0
�=
p
n
> z�:

where Pr (Z > z�) = �:

Of the two approaches, the �rst �ts better the intuitive idea of asking
whether �x is too large to be compatible with � = �0; but the second is better
for performing the test quickly.

An equivalent approach using a suitable con�dence interval will be de-
scribed in Section 14.9.

14.5.2 Example

This example is deliberately free from a real world context. A random
sample of size 50 is drawn from N (�; 5) ; to test the hypotheses

H0 : � = 20 against HA : � > 20:

Suppose that the sample mean is �x = 20:7: We choose the conventional
Type I error probability or level of signi�cance of 5%: We need the upper
5% percentage point of the N (0; 1) distribution:

Pr (Z > z�) = � = 0:05

implies z� = 1:645: The critical value �xU is then

�xU = �0 +
�p
n
z� = 20 +

r
5

50
(1:645) = 20:52:

We reject H0 if
�x > �xU
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and �x = 20:7 > �xU here, so H0 is rejected.
The more direct approach starts by �nding the critical value z� from the

tables, and computes

z =
�x� �0p
�2=n

=
20:7� 20p
5=50

= 2:2136:

Since z > z�; here, we reject H0:

14.5.3 A lower one tailed test

This follows the lines one might anticipate from the discussion above. To
test

H0 : � = �0 against HA : � < �0

using a random sample from N
�
�; �2

�
with �2 known, we know that small

values of �x are evidence against the null hypothesis. How small is determined
by the critical value �xL designed to set the level of signi�cance to a value
� :

Pr
�
�X < �xL jH0 true

�
= �:

Following through the arguments of the preceding case, we get

Pr

� �X � �0
�=
p
n
<
�xL � �0
�=
p
n
jH0 true

�
= �;

or

Pr

�
Z <

�xL � �0
�=
p
n
jH0 true

�
= �

for

Z =
�X � �0
�=
p
n
;

Since Z s N (0; 1) ; this implies that

�xL � �0
�=
p
n
= �z�

for Pr(Z < �z�) = �; and then

�xL = �0 �
�p
n
z�:

Suppose that in the context of the previous example (in Section 14.5.2)
the sample information is now �x = 19:7; and the hypotheses to be tested are

H0 : � = 20 against HA : � < 20:

This time, the level of signi�cance or Type I error probability will be set at
� = 0:01; leading to

Pr (Z < �z�) = 0:01
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or
�z� = �2:33:

The critical value is then

�xL = �0 �
�p
n
z� = 20�

r
5

50
(2:33) = 20� 0:74 = 19:26:

Here,
�x = 19:7 > �xL = 19:26;

so that the null hypothesis is not rejected: �x is not su¢ ciently extreme in
the �right�direction.

The direct approach calculates the sample value of Z as

z =
�x� 20p
5=50

=
19:7� 20p
5=50

= �0:95;

to be compared with the lower tail percentage point �z� = �2:33: Again,
the null hypothesis is not rejected at the 1% level.

14.5.4 A two tailed test

This will be described independently of the motivation via con�dence inter-
vals in Section 14.2, and the observation in Section 14.5 that the con�dence
interval reasoning was suited to two tailed tests.

Suppose that a sample is drawn from N
�
�; �2

�
; with �2 assumed known,

with the intention of testing the hypotheses

H0 : � = �0 against HA : � 6= �0:

Following the reasoning of the upper and lower one-tailed tests, we can argue
that values of �x which are either too small or too large relative to �0 count
as evidence against H0: So, we need to �nd two critical values �xL; �xU such
that

Pr
��
�X < �xL

�
or
�
�X > �xU

�	
= �:

This is cumbersome to standardise directly, so we use the probability of the
complementary event,

Pr
�
�xL 6 �X 6 �xU

�
= 1� �

and standardise using

�X s N
�
�0;

�2

n

�
to give

Pr

 
�xL � �0p
�2=n

6 Z 6 �xU � �0p
�2=n

!
= 1� �:
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This will be true if

�xL � �0p
�2=n

= �z�=2;
�xU � �0p
�2=n

= z�=2

or

�xL = �0 � z�=2

r
�2

n
; �xU = �0 + z�=2

r
�2

n
:

If

�x < �xL or �x > �xU ;

reject the null hypothesis.
The direct version again computes the sample value of

Z =
�X � �0
�=
p
n
:

if

z < �z�=2 or z > z�=2

reject the null hypothesis.
For an example, consider the case of packing jars of jam, as in Section

14.3.3. Here, the hypotheses are

H0 : � = 454 against HA : � 6= 454:

Suppose that jam jar weights are distributed as X s N (�; 16) and that a
random sample of 25 jars gives a sample mean weight of �x = 452:41 grams.
Then, using a 5% level of signi�cance, z�=2 = 1:96; so that

�xL = �0 � z�=2

r
�2

n
= 454� 1:96

r
16

25
= 452:432

�xU = �0 + z�=2

r
�2

n
= 454 + 1:96

r
16

25
= 455:568:

Here, the null hypothesis is just rejected.
Using the direct method we calculate

z =
�x� �0
�=
p
n
=
452:41� 454

0:8
= �1:9875;

with the same conclusion.
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14.6 Hypothesis tests: other cases

We know from the discussion of con�dence intervals leading up to Section
13.2.6 that the assumption that the population variance �2 is known in
sampling from N

�
�; �2

�
has to be seen as a convenient, simplifying but

unrealistic assumption. Indeed, this can also be said of the assumption that
we sample from a normal distribution.

We have seen that the �rst issue leads to con�dence intervals based on
the t distribution in Section 13.4.3, and the second issue leads to large sam-
ple or approximate con�dence intervals in Section 13.6. The discussion of
hypothesis testing was motivated via an argument based on con�dence in-
tervals, so that it is reasonable to expect that the hypothesis tests described
in Sections 14.5.1, 14.5.3 and 14.5.4 can be adapted to deal with these cases.

14.6.1 Test statistics

One can see that in the case that �2 is known, the random variable

Z =
�X � �0p
�2=n

drives the hypothesis testing procedure. It is convenient to call Z a test
statistic, to distinguish it from other sample statistics, and it has a known
distribution, when the null hypothesis � = �0 is true, namely N (0; 1) :

The distribution of this test statistic, under the null hypothesis,
provides the critical values (directly or indirectly) required for the test. The
sample value of Z; z; will be called the value of the test statistic. The
�direct�method of carrying out the hypothesis test involves a comparison
of the value of the test statistic with these critical values.

14.6.2 The t case

If we wish to test the hypotheses

H0 : � = �0 against HA : � 6= �0

(for example) about the mean of N
�
�; �2

�
; with �2 unknown, the analogy

with con�dence intervals suggests that we should base the test procedure on
another test statistic,

T =
�X � �0p
S2=n

;

since we know that under the null hypothesis,

T s tn�1:
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A critical value approach based on �xL and �xU here is a little clumsy, so
we use the �direct method�, arguing intuitively that if �x is too small or too
large relative to �0; the sample value of T will also be too small or too large
relative to critical values which are percentage points of the t distribution.
These are denoted tn�1;� :

Pr (T > tn�1;�) = �; Pr (T 6 tn�1;�) = 1� �:

For this test, the acceptance region is de�ned by

Pr
�
�tn�1;�=2 6 T 6 tn�1;�=2

�
= 1� �

and then the rejection region is

Pr
��
T < �tn�1;�=2

�
[
�
T > tn�1;�=2

�	
= �:

But, this is also equivalent to

Pr
�
jT j > tn�1;�=2

�
= � :

see Section 12.2.6 for a revision of the argument.
So, to test the hypotheses

H0 : � = �0 against HA : � 6= �0

we

� calculate the sample value of T;

t =
�x� �0p
s2=n

;

� compare jtj with tn�1;�=2;

� if jtj > tn�1;�=2; reject the null hypothesis.

One can immediately see how the one sided cases would work. Again
compute the sample value of T; and use as critical values �tn�1;� for the
lower one tailed case, and tn�1;� for the upper one tailed case.

Summarising the procedure for each case,

1. to test the hypotheses

H0 : � = �0 against HA : � 6= �0

at level of signi�cance �; we
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� calculate the sample value of T;

t =
�x� �0p
s2=n

;

� compare jtj with tn�1;�=2;
� if jtj > tn�1;�=2; reject the null hypothesis.

2. to test the hypotheses

H0 : � = �0 against HA : � < �0

at level of signi�cance � we

� calculate the sample value of T;

t =
�x� �0p
s2=n

;

� compare t with �tn�1;�;
� if t < �tn�1;�; reject the null hypothesis.

3. to test the hypotheses

H0 : � = �0 against HA : � > �0

at level of signi�cance � we

� calculate the sample value of T;

t =
�x� �0p
s2=n

;

� compare t with tn�1;�;
� if t > tn�1;�; reject the null hypothesis.

For an example, we adapt the jam example in Section 14.5.4. Here the
objective is to test the hypotheses

H0 : � = 454 against HA : � 6= 454

using the results of a random sample of size 25 from N
�
�; �2

�
, yielding

�x = 452:41 and s2 = 12:992:We choose the conventional level of signi�cance,
5%; so we need the value t24;0;025 which gives

Pr (jT j > t24;0;025) = 0:05:
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From the tables in the Appendix, we need the column headed 0:975; giving

t24;0;025 = 2:064:

The value t of the test statistic T is

t =
�x� �0p
s2=n

=
452:41� 454p
12:992=25

= �2:206;

so that
jtj = 2:206 > t24;0;025 = 2:064;

leading in this case to rejection of the null hypothesis.

14.6.3 Tests on � using large sample normality

Consider the example used in Section 13.2.3 and again in Section 14.5.2.
There, a random sample of size 50 was drawn from a distribution of house-
hold incomes in £ �000, which was assumed to be normally distributed. There
is plenty of empirical evidence that household incomes are not normally dis-
tributed, so if n = 50 is considered su¢ ciently large, a large sample test
can be used, without assuming normality.

This is based on the argument that

T =
�X � �0p
S2=n

s N (0; 1) approximately.

So, test procedures for the hypothesis

H0 : � = �0

against the usual alternatives use the rejection regions in Section 14.6.2;
using the sample value t of T; and percentage points from N (0; 1) instead
of the t distribution used there.

For the example suppose we wish to test

H0 : � = 20 against HA : � > 20

at the conventional 5% level of signi�cance. The random sample of size 50
yields

�x = 22:301; s2 = 12:174:

First, we need the value z� such that

Pr (Z > z�) = 0:05;

which is
z� = 1:645:
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Next, we need the sample value of T :

t =
�x� �0p
s2=n

=
22:301� 20p
12:174=50

= 4:66:

This clearly exceeds z� = 1:645; so the null hypothesis is rejected � ap-
proximately.

The idea that we can only perform an approximate test does lead to
di¢ culties. If, as in Section 14.5.4, a null hypothesis is only marginally
rejected (or even accepted), there is always the question as to whether this
is �correct� or simply a consequence of a poor approximation given the
sample size available. This comment points to a possible solution: get a
bigger sample and try again.

14.6.4 Tests on a proportion �

In random sampling from a Bernoulli distribution with success probability
�, it is known from Sections 12.3 and 13.6.3 that the sample proportion P
is approximately normally distributed in large samples:

P s N
�
�;
� (1� �)

n

�
approximately:

This was used to construct a large sample con�dence interval for � in Section
13.6.3. There, the fact that the variance of P is unknown is handled by
working with the approximate distribution of the random variable T � :

T � =
P � �r
P (1� P )

n

s N (0; 1) ; approximately.

Suppose that we wished to test the hypotheses that

H0 : � = �0 against HA : � 6= �0

for example. This null hypothesis speci�es the value of the mean of the
approximate distribution of P; and also the variance. So, it would also be
justi�able to use as a test statistic,

T =
P � �0r
�0 (1� �0)

n

with
T s N (0; 1) approximately,

under the null hypothesis.
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Textbooks di¤er on whether one should use T or T � as a test statistic.
In this course, we will be agnostic, and allow the use of either. However,
there is the caveat that it is possible to reject a hypothesis using the test
statistic T; and accept it with T � � the converse is also possible.

Apart from this di¢ culty, carrying out an approximate large sample test
for � is just the same as the large sample normal case for the �:

To illustrate the ideas, we use the example of households owning a DVD
player used in Section 13.6.4. A market researcher suspects that the owner-
ship of DVD players has risen above the previously assumed level of 25%: He
collects information from the sample of 300 households, and �nds p = 0:28:

Here we test

H0 : � = 0:25 against HA : � > 0:25;

using a level of signi�cance of 1%: So, we need the value z� such that

Pr (Z > z�) = 0:01 for Z s N (0; 1) ;

which is
z� = 2:3263

from the table in Section 13.2.5. Here we use T as the test statistic, with
sample value

t =
p� �0r
�0 (1� �0)

n

=
0:28� 0:25r
0:25(1� 0:25)

300

= 1:2:

This is an upper one tailed test, and t does not exceed the critical value
z� = 2:3263; so we do not reject (i.e. accept) the null hypothesis.

It should be clear how to extend this reasoning to examples with lower
one-tailed or two tailed alternative hypotheses.

14.7 p values: the modern approach

Consider the example of Section 14.5.2 again. Here, a random sample of
size 50 was drawn from N (�; 5) ; yielding �x = 20:7: The hypotheses

H0 : � = 20 against HA : � > 20

were tested at a 5% level of signi�cance. The critical value for �x was found
to be

�xU = 20:52;

and, for the direct method,
z� = 1:645:
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The z value derived from �x was

z = 2:2136;

so that the null hypothesis was rejected.
Examine Figure 14.7 carefully: it shows a fragment of the sampling

distribution of �X under the null hypothesis, more speci�cally, the upper
tail. The critical value �xU = 20:52 is shown, and is such that

Pr
�
�X > 20:52 jH0 true

�
= 0:05:

Also, the position of the sample mean, �x = 20:7; is shown. It should be
obvious from the picture that

Pr
�
�X > 20:7 jH0 true

�
< 0:05 :

just in case it isn�t, the corresponding area is shaded. Denote this probability
by p :

Pr
�
�X > 20:7 jH0 true

�
= p:

What should be deduced from Figure 14.7 is that

�x > �xU if and only if p < 0:05:

In other words, comparing the value of the probability p with the level of
signi�cance is equivalent to comparing the value of �x with its critical value,
which we also know is equivalent to comparing the value z with z� = 1:645:

The probability p is a p-value, and is sometimes called an observed
signi�cance level.
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14.7.1 p values

This initial de�nition is only appropriate for the case where we sample from
N
�
�; �2

�
; with �2 known. Extensions to other cases will follow. For one

tailed hypothesis tests, a p value is the probability of a value at least as
extreme as the sample value �x; given that the null hypothesis is true. So,

� for a lower one tailed hypothesis, the p value is Pr
�
�X < �x jH0 true

�
;

� for an upper one tailed hypothesis, the p value is Pr
�
�X > �x jH0 true

�
:

Computing the p value follows the usual method of standardisation: e.g.

when �X s N
�
�0;

�2

n

�
;

Pr
�
�X > �x jH0 true

�
= Pr

� �X � �0
�=
p
n
>
�x� �0
�=
p
n
jH0 true

�
= Pr

�
Z >

�x� �0
�=
p
n
jH0 true

�
= Pr (Z > z jH0 true) ;

where z is the �observed value�of Z:
For the example above, we �nd

Pr
�
�X > 20:7 jH0 true

�
= Pr (Z > 2:2136 jH0 true)
= 0:01343

= p

which is clearly less than 0:05: Exactly the same principle can be used for
lower tail critical values.

It should be clear from this argument that a p value could be de�ned
directly in terms of the value of the test statistic Z; rather than �X; as p =
Pr (Z > z jH0 true) : This is very much in the spirit of the direct approach
to performing a hypothesis test.

14.7.2 Upper and lower p values

How can this idea be adapted to the case of two tailed tests? Using the
direct approach, to test

H0 : � = �0 against HA : � 6= �0;

we calculate the value of

Z =
�X � �0
�=
p
n
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and compare with critical values �z�=2 and z�=2: It should be clear, by
inspecting Figure 13.2.5 in Section 13.2.5 and using the arguments above
that

z < �z�=2 if and only if Pr (Z < z jH0 true) < �=2
and

z > z�=2 if and only if Pr (Z > z jH0 true) < �=2:
To follow the logic of p values for one tailed hypotheses, we have to

accept that there are two p values for the two tailed case, a lower p value
denoted pL; and an upper p value denoted pU :

pL = Pr (Z < z jH0 true) ; pU = Pr (Z > z jH0 true) :
How would these be used to reject a null hypothesis? Only one of the

two inequalities
z < �z�=2 and z > z�=2

de�ning the rejection region can be true, so only one of the lower and upper
p values can be less that �=2: It is of course possible that neither pL nor pU
are less than �=2: So, a rejection rule

� reject H0 if min (pL; pU ) < �=2

would match the rule based on the critical values �z�=2 and z�=2: How-
ever, it is conventional to modify this so that the comparison is with the
level of signi�cance:

� reject H0 if 2min (pL; pU ) < �:

This need to calculate upper and lower p values, and then double the
smallest one may seem complicated, but in practice it is easy to use. For, if
z < 0; then the lower p value pL must be the smallest, whereas if z > 0; the
upper p value pU is the smallest. So, one only needs a single calculation.

Consider the example in Section 14.5.4. Here the observed value of Z is

z = �1:9875:
The lower p value is (using EXCEL)

pL = Pr (Z < �1:9875 jH0 true)
= 0:023433

and the upper p value is therefore

pU = 1� pL = 0:976567:
Comparing the smaller of the two, pL; with �=2 = 0:025, or comparing twice
the smaller,

p = 0:046866;

with � = 0:05 leads to the same conclusion as before, reject the null hypoth-
esis - but in a sense, only just. One can also see con�rmation of the idea
that if z < 0; pL will be smaller than pU :
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14.7.3 p values for the t distribution case

Exactly analogous arguments apply to the case where we sample fromN
�
�; �2

�
,

with �2 unknown, in order to test hypotheses like

H0 : � = �0 against HA : � > �0:

Instead of using the test statistic Z; we use the test statistic

T =
�X � �0p
S2=n

s tn�1;

where this distribution statement is true under the null hypothesis. So,
given the sample value of T; t; we compute (for this upper tailed case)

p = Pr (T > t jH0 true) :

Equally, for a lower one tailed alternative,

H0 : � = �0 against HA : � < �0:

we compute
p = Pr (T < t jH0 true) :

For the two-tailed case,

H0 : � = �0 against HA : � 6= �0;

we would calculate both of these probabilities and call them the upper and
lower p values.

The rejection rules are just the same as in the cases discussed in the pre-
vious few sections. However, there seems to be a major practical di¢ culty:
there are no tables of probabilities for the t distribution. One therefore has
to use EXCEL: how this can be done is outlined in Section 13.4.2.

The reasoning is illustrated by using the jam example of Sections 14.3.3,
14.5.4 and 14.6.2. The t test for a two tailed hypothesis performed in Section
14.6.2 gave a value of the test statistic T as

t = �2:206;

with 24 degrees of freedom. Since t is negative, we know that the lower p
value

Pr (T < t jH0 true)

will be the smaller of the lower and upper p values. Recall from Section
13.4.2 that EXCEL calculates

Pr (T > t) = tdist (t; df; 1) ;
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for t > 0: Here, we exploit symmetry of the t distribution to give

Pr (T < �2:206 jH0 true) = Pr (T > 2:206 jH0 true)
= 0:018601:

Here, then
pL = 0:018601 < �=2 = 0:025

so that
p = 2min (pL; pU ) = 0:037203 < � = 0:05;

leading to rejection of the null hypothesis, as in Section 14.6.2.

14.7.4 Large sample p values

Whether for population means or proportions, hypothesis tests for these are
based on the large sample normality of the test statistic

T =
�X � �0p
S2=n

:

T s N (0; 1) approximately

under the null hypothesis. Once the sample value of T has been obtained,
the arguments laid in Sections 14.7.1 and 14.7.2 can be applied directly.

To illustrate, the example of a test on a proportion in Section 14.6.4 is
used. The alternative hypothesis is upper one tailed, and the value of the
test statistic T is

t = 1:2;

so that the p value is

Pr (T > 1:2 jH0 true) = 0:11507:

Since this exceeds the level of signi�cance � = 0:01 originally chosen for the
example, we accept the null hypothesis, as before.

14.8 Why use p values?

As presented, the calculation of p values is yet another way to carry out a
hypothesis test. In the case of tests based on the t distribution, it is more
di¢ cult for a student to carry out the test using a p value compared with
the classical approach. Why then are they used?

Hypothesis tests have been motivated by the question: is the sample
evidence too extreme compared with the hypothesised value of the population
parameter? The construction of hypothesis tests relies on �nding a measure
of �extremeness�, but these measures are di¤erent for di¤erent sampling
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distributions. The logic of the arguments presented above show that p values
are also a measure of extremeness, but no matter what sampling distribution
is used, p values appear on a common scale, the interval (0; 1) : This common
scale, independent of context, is one reason for the use and importance of p
values, but there are other reasons.

We noted in constructing hypothesis tests that the rejection region is
designed to deliver a pre-speci�ed Type I error probability or level of sig-
ni�cance. This is conventionally chosen to be 5% or perhaps 1%: Why?
There is no simple answer to this. In principle, one can attempt to evaluate
�losses�which might be incurred if a Type I error or a Type II error occurs,
and then choose the level of signi�cance to re�ect the relative importance of
these losses. In practice this is never done, so this argument does not help
to explain the essentially arbitrary choice of � = 0:05:

The advantage of a p value is that it can be interpreted as a measure of
the strength of the sample evidence for or against a null hypothesis:

� the smaller is the p value, the stronger the sample evidence against
the null hypothesis;

� the larger the p value, the stronger the sample evidence in favour of
the null hypothesis.

In e¤ect, one steps away from the hypothesis testing context towards
evaluating the weight of evidence about the null hypothesis: decisions
about its truth need not be made. In practice, such decisions are still made,
and the p value used to re�ne these decisions. The point here is that the p
values (for example)

p = 0:045; p = 0:00001

both lead to a rejection at a 5% signi�cance level, but one of them conveys
much stronger information about the weight of evidence against the null
hypothesis than the other.

There is another, perhaps more powerful, reason to explain the impor-
tance of p values in statistical practice. One has to accept that all of the
calculations required for statistical inference discussed in this course are rou-
tinely performed using a statistical package like SPSS, SAS, R, etc. etc., and
these packages always produce p values. Rather than looking at the value of
a test statistic, then �nding a critical value from tables, and then making a
decision, one simply looks at the p value produced by the computer package.

14.9 Using con�dence intervals for one sided tests

In Sections 14.2 and 14.5, it was argued that the con�dence interval proce-
dure was really designed for two-sided alternative hypotheses, i.e. for testing
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that
H0 : � = �0 against HA : � 6= �0:

So, the null hypothesis is rejected if

either �0 < cL = �x� z�=2

r
�2

n
or �0 > cU = �x+ z�=2

r
�2

n
;

Many students �nd it economical to use this speci�c rejection criterion to
handle the case of one-sided alternative hypotheses as well. It is not correct
to do this. Fortunately, it is easy to modify the con�dence interval procedure
to produce appropriate rejection criteria for testing one-sided alternatives.

Recall from Section 14.2.1 that the rejection criterion above is equivalent
to a rejection criterion using critical values :

either �x > �xU = �0 + z�=2

r
�2

n
or �x < �xL = �0 � z�=2

r
�2

n
:

The link between the two sets of rejection criteria is clear:

�x > �xU () �0 < cL;

�x < �xL () �0 > cU :

With this link in mind, we can use the critical value rejection rules for
one sided alternatives to generate corresponding rules using the appropriate
con�dence bound.

For upper one sided alternative hypotheses, the rejection rule is (see
Section 14.5.1)

�x > �xU = �0 + z�

r
�2

n

and for lower one sided alternative hypotheses, the rejection rule is (see
Section 14.5.3)

�x < �xL = �0 � z�

r
�2

n
:

Each of these is designed to set the Type I error probability or level of
signi�cance at �:

Translating into corresponding con�dence bounds, we would have to re-
place z�=2 in cL and cU by z� :

cL = �x� z�

r
�2

n
; cU = �x+ z�

r
�2

n
:

These con�dence bounds do NOT correspond to a 100 (1� �)% con�dence
interval. Rather, they correspond to a 100 (1� 2�)% con�dence interval.

This is the key point. So, for example, to carry out a 5% one sided test,
one has to construct �rst a 90% con�dence interval, NOT a 95% con�dence
interval.
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Once the correct 100 (1� 2�)% con�dence interval is calculated, use the
upper con�dence bound cU ; in the case of a lower one tailed alternative,
to reject the null hypothesis if

�0 > cU ;

since this corresponds to
�x < �xL:

Use the lower con�dence bound cL; in the case of an upper one tailed
alternative, to reject the null hypothesis if

�0 < cL;

since this corresponds to
�x > �xU :

Although this discussion uses the original simpli�ed case of sampling
from N

�
�; �2

�
with �2 known, it is clear that the reasoning carries over

to all the other cases discussed above, simply by changing the percentage
points as necessary.

Consider the example of Section 14.5.2. The aim is to test

H0 : � = 20 against HA : � > 20

in sampling from N (�; 5) using a 5% level of signi�cance. To use the appro-
priate con�dence interval procedure, we need the 90% con�dence interval

[cL; cU ] = �x� z�=2 SE
�
�X
�
;

where
� = 0:1; z�=2 = 1:6449:

Since �x = 20:7; n = 50; we have

[cL; cU ] = 20:7� (1:6449)
r
5

50
= 20:7� 0:52
= [20:18; 21:12]:

If �0 < cL; we should reject the null hypothesis. Since �0 = 20 < cL = 20:18;
we reject the null, as in Section 14.5.2.

14.9.1 Exercise 8

1. Imagine that you are a member of a team of scienti�c advisors consider-
ing whether genetic modi�cation of crops has any health consequences
for the population at large. Having some knowledge of statistics, you
set up the issue as one of hypothesis testing.
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(a) What would your null and alternative hypotheses be?

(b) Explain the interpretation of a Type I error and a Type II error
in this context.

(c) What sort of costs would arise as a consequence of each type of
error?

(d) What sort of sample evidence would be needed to enable a sta-
tistical conclusion to be reached?

(e) If suitable sample evidence were available, what advice would you
give about the strength of the evidence that would be required
to reject your null hypothesis?

2. Weekly wages in a particular industry are known to be normally dis-
tributed with a standard deviation of £ 2.10. An economist claims
that the mean weekly income in the industry is £ 72.40. A random
sample of 35 workers yields a mean income of £ 73.20.

(a) What null hypothesis would you specify?

(b) Without any further information, explain the justi�cation for
choosing

i. a two tailed alternative hypothesis;
ii. an upper one tailed alternative hypothesis.

(c) Perform the tests for each of these alternative hypotheses in turn,
using

i. p values
ii. classical hypothesis tests
iii. a suitable con�dence interval procedure

at a 5% level of signi�cance.

3. This question is a version of Question 2.

Weekly wages in a particular industry are known to be normally dis-
tributed, with an unknown variance. An economist claims that the
mean weekly income in the industry is £ 72.40. A random sample of
15 workers gives a sample mean of £ 73.20 and a sample standard devi-
ation of £ 2.50. Redo part (c) of Question 2 with this new information.
You will need to use EXCEL to compute the p values required.

4. A motoring organisation is examining the reliability of imported and
domestically produced vans. Service histories for 500 domestically
made and 500 imported vans were examined. Of these, 159 domes-
tically produced vans and 121 imported vans had repairs for break-
downs. Test the hypothesis that the true proportion of breakdowns to
be expected in the two populations of vans is 0:5;
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(a) using an upper one sided alternative hypothesis for domestically
produced vans;

(b) using a two-sided alternative hypothesis for imported vans.
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Chapter 15

EXTENSIONS TO THE
CATALOGUE

It should have become apparent that statistical inference appears to deal
with a catalogue of cases:

� inference on a population mean � in sampling from N
�
�; �2

�
when �2

known;

� inference on a population mean � in sampling from N
�
�; �2

�
when �2

unknown;

� inference on a population mean � in sampling from a population with
mean � and variance �2 when the sample is large;

� inference on a population proportion when the sample is large.

In reality, the catalogue is extremely extensive. Introductory statistics
courses typically discuss more entries in the catalogue than have been cov-
ered in this course. This section covers some of these additional cases.

Please note that NONE of the topics in this Section are EX-
AMINABLE. They may be ignored with impunity.

The reason for these extensions is that they help to show how the prin-
ciples developed in earlier sections carry over easily to other situations. In
addition, these extensions are practically useful.

15.1 Di¤erences of population means

Many types of investigation involve comparisons of population means. Is
population mean income for men and women the same? Does school A
have the same average reading score as school B? Other examples refer to a
treatment e¤ect. Some kind of treatment - a new reading scheme, a training

207
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scheme, a new drug treatment, is conceptually applied to a population. Is
the post-treatment population mean an improvement (i.e. in whatever the
appropriate direction) over the pre-treatment population mean?

To formalise this, let X s N
�
�X ; �

2
X

�
describe one population, and

Y s N
�
�Y ; �

2
Y

�
describe the other. The questions above are most naturally

phrased in terms of the di¤erence of the two population means, �X � �Y :
The �rst, most basic question is how can one estimate this parameter. For,
once this is dealt with, the sampling distribution of the estimator can be
used to construct a con�dence interval for �X � �Y ; or tests of hypotheses
about �X � �Y :

Estimating �X is easy: use the sample mean �X of a random sample from
the distribution of X: The same is true for �Y : use the sample mean �Y :
There is no reason why the same size of sample has to be drawn from each
distribution, so suppose that a sample of size n1 is drawn from X; and n2
from Y: Each of the population mean estimators is unbiased, so it should
follow that

�X � �Y

is an unbiased estimator of �X � �Y :

15.1.1 The sampling distribution of �X � �Y

In deriving this distribution, we have to know how sampling from the X
distribution and sampling from the Y distribution are related. Does making
a drawing from the X distribution in�uence what is drawn from the Y
distribution? Usually, we would like the answer to this question to be no,
in which case, we can assume that the samples are independent of each
other, thus making the sample random variables

X1; :::; Xn1 and Y1; :::; Yn2

independent of each other. In turn, this makes �X and �Y independent
random variables.

Given independence, we can deduce from

�X s N
�
�X ;

�2X
n1

�
; �Y s N

�
�Y ;

�2Y
n2

�
that

�X � �Y s N
�
�X � �Y ;

�2X
n1

+
�2Y
n2

�
:

Although the parameters are di¤erent, this has exactly the same struc-
ture as the sampling distribution of �X: If the parameters �2X and �2Y are
known, then we can use exactly the same arguments as in the case of a
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single population mean � to construct con�dence intervals and hypothesis
tests using the standardised random variable

Z =

�
�X � �Y

�
� (�X � �Y )s

�2X
n1

+
�2Y
n2

s N (0; 1) :

So, details are not discussed here.

15.1.2 Unknown variances

What happens if we abandon the simplifying assumption that �2X and �2Y
are known? Arguing by analogy with Section 13.4, one might anticipate
replacing these variance parameters by their unbiased estimators S2X and
S2Y : However, the random variable�

�X � �Y
�
� (�X � �Y )s

S2X
n1

+
S2Y
n2

does not have a t distribution. Finding the sampling distribution here is a
�well-known�, old problem in statistics called the Behrens-Fisher problem,
which we need not investigate.

In the spirit of making assumptions to simplify a di¢ cult problem, we
make the conventional assumption here. This is to assume that

�2X = �
2
Y = �

2 :

i.e. assume that the population variances are the same. There is no reason
why this should be true in practice: indeed, this is the chief objection to the
sampling distribution to be outlined and used below.

Under this common variance assumption,

var
�
�X � �Y

�
=
�2X
n1

+
�2Y
n2

= �2
�
1

n1
+
1

n2

�
:

The common variance is still unknown, and will have to be estimated. Both
S2X and S

2
Y are still unbiased for �

2; but there is no reason why the estimates
from each sample will be equal. It is therefore reasonable to combine or pool
the X and Y samples to construct an estimator of �2:

However, the ordinary sample variance estimator based on the pooled
sample cannot be used because each sample comes from a population with
a di¤erent population mean, and an estimator of �2 which re�ects this has
to be used. This is constructed as a weighted average of S2X and S2Y : The
weights are

n1 � 1
(n1 � 1) + (n2 � 1)

;
n2 � 1

(n1 � 1) + (n2 � 1)
;
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being almost equal to the relative size of each sample to the pooled sample.
The pooled variance estimator is

S2p =
(n1 � 1)S2X + (n2 � 1)S2Y
(n1 � 1) + (n2 � 1)

Why is this complication helpful? Because it can be shown that the
random variable

T =

�
�X � �Y

�
� (�X � �Y )s

S2p

�
1

n1
+
1

n2

� s tn1+n2�2:

Notice that the degrees of freedom in the t distribution is the value in the
denominator of S2p :

So, again by re-de�ning variables names, the logic for con�dence intervals
or hypothesis tests for �X � �Y on hypothesis tests using the t distribution
again carries over straightforwardly. However, since there are some impor-
tant detail changes, two examples will be given

The interval estimator or con�dence interval formula for �X��Y follows
that given in Section 13.4.3 as

[CL; CU ] = �X � �Y � tn1+n2�2;�=2

s
S2p

�
1

n1
+
1

n2

�
;

with sample con�dence bounds (�con�dence interval�)

�x� �y � tn1+n2�2;�=2

s
s2p

�
1

n1
+
1

n2

�
:

Suppose that independent random samples of size 6 and 5 respectively
are drawn independently from two normal distributions with unknown means
and variances, �X ; �

2
X ; and �Y ; �

2
Y : The sample information is

n1 = 6; �x = 19; s2X = 100;

n2 = 5; �y = 25; s2Y = 64:

We construct a 90% con�dence interval for �X��Y : First, assume a common
population variance and calculate the pooled variance estimate:

s2p =
(n1 � 1) s2X + (n2 � 1) s2Y
(n1 � 1) + (n2 � 1)

=
(5) (100) + (4) (64)

9
= 84:
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For a 90% con�dence interval we need

t9;0:05 = 1:833:

Then, the con�dence interval is

�x� �y � tn1+n2�2;�=2

s
s2p

�
1

n1
+
1

n2

�
= �6� (1:833)

s
84

�
1

6
+
1

5

�
= �6� (1:833) (5:550)
= �6� 10:173
= [�16:173; 4:173] :

Next, a hypothesis test using di¤erent data, but involving the same ideas.
This question is whether mean household income in city A is the same as in
city B. Independent random samples are drawn from

XA s N
�
�A; �

2
A

�
; XB s N

�
�B; �

2
B

�
to test the hypotheses

H0 : �A = �B against HA : �A 6= �B;

at a 1% level of signi�cance. The sample information is

n �x s2

A 10 20:8 8:65
B 9 15:7 5:82

Again it is necessary to make the common population variance assumption,

�2A = �
2
B = �

2:

The hypothesis test will be based on large or small values of the test statistic

T =
�XA � �XB � (�A � �B)s

S2p

�
1

nA
+
1

nB

� s tnA+nB�2

where

S2p =
(nA � 1)S2A + (nB � 1)S2B
(nA � 1) + (nB � 1)

:

Note that under the null hypothesis,

�A � �B = 0

and so can be dropped from T:
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The calculations for s2p are

s2p =
(nA � 1) s2A + (nB � 1) s2B
(nA � 1) + (nB � 1)

=
(9) (8:65)2 + (8) (5:82)2

9 + 8
= 55:55186;

and the sample value of T is

t =
�xA � �xBs

s2p

�
1

nA
+
1

nB

�
=

20:8� 15:7q
(55:55186)

�
1
10 +

1
9

�
= 1:4892:

Under H0; T s tnA+nB�2 i.e. 17 df, and for a 1% test, we need the value
t17;�=2 such that

Pr
�
T > t17;�=2 jH0 true

�
= � = 0:01:

Using the Appendix, the column headed 0:995 has to be used, giving

t17;�=2 = 2:898:

For the p value, we need only calculate the upper p value, since t > 0; and
this is

Pr (T > 1:4892 jH0 true) = tdist(1:4892; 17; 1)

= 0:077376;

making the p value
p = 0:154752:

Both pieces of information lead to the same conclusion - do not reject the
null hypothesis.

15.1.3 Large sample ideas

The t test arguments for �X � �Y tend to get labelled as a small sample
procedure, to be used when the population variances are unknown. How-
ever, one sometimes gets the impression from textbooks that in testing the
di¤erence of two means, with variances unknown, that one must make the
common variances assumption. If this is not actually true, then this is not
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a good assumption to make. One has to accept that little can be done with
small samples, unless the common variances assumption is reasonable. In
any case, as has been argued before, sampling from normal distributions is
typically an assumption, and therefore not necessarily true.

Provided that the two sample sizes are su¢ ciently large, the random
variable

T =

�
�X � �Y

�
� (�X � �Y )s

S2X
n1

+
S2Y
n2

does have an approximate standard normal distribution,

T s N (0; 1) approximately,

under the null hypothesis. Again, this puts us back into the context of con-
�dence intervals and tests for normal distributions, as discussed in Section
14.6.3. There is therefore no need to give more details.

15.1.4 Paired Samples

The introduction to this section mentioned situations in which shifts in
population means might occur because some �treatment�has been adminis-
tered. At a practical level, the same treatment administered to two di¤erent
subjects may produce wildly di¤erent e¤ects basically due to the di¤erence
in natures of the two subjects. Clearly it would be desirable to use a proce-
dure which eliminated as many of these subject-speci�c e¤ects as possible,
so that any observed di¤erences can be ascribed solely to the treatment.

One possible strategy here is to measure a subjects� response (what-
ever this is) before the treatment is administered, and then again after the
treatment. The treatment e¤ect for the individual is then the di¤erence
in responses. The point is that di¤erences in the level of response due to
di¤erences in subjects are eliminated in this method. So, the responses are
�paired�.

A simple example will help.
Concerned with the obesity of some of its citizens, a small town wants

to instigate a �tness campaign. Before spending large amounts of money on
the �tness campaign, it carries out a trial using a sample of 6 volunteers.
The �before�and �after�body weights (in kg) are

Individual 1 2 3 4 5 6
Before 76 89 70 83 77 74
After 71 88 67 80 73 75

Di¤erences -5 -1 -3 -3 -4 1

There is some slight evidence from the sample that weight loss for the larger
weights is smaller than that for the smaller weights. In other words, there
is some evidence of subject-speci�c e¤ects.
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If we suppose that for each individual, the before and after weights are
normal random variables, it will follow that the di¤erence Di is also normal,
with some mean and variance. Treating the mean and the variance as
unknown avoids any di¢ culties in �nding out exactly what the parameters
of this normal distribution are. The only other required assumption is that
the sample of di¤erences

D1; :::; D6

form a random sample from

D s N
�
�; �2

�
:

Detecting an e¤ect of the treatment can then be done by performing a t
test of the hypotheses

H0 : � = 0 against HA : � < 0:

The usual sample information is

�x = �2:5; s2 = 4:7;

so that the value of the test statistic is

t =
�2:5p
4:7=6

= �2:8247:

Performing the test at a 5% level, the critical value is

�t5;0:05 = �2:015;

with the obvious conclusion of rejecting the null hypothesis. The p value is

Pr (T < �2:8247 jH0 true) = 0:018452;

con�rming the conclusion.

15.2 Di¤erences of proportions

Exactly the same sort of ideas as in Section 15.1 apply here. Two populations
may have di¤erent population proportions, even if they are both unknown.
Can one estimate the di¤erence in proportions, either point or interval, and
test hypotheses about the di¤erence? The answer is of course yes, using the
large sample normal approximation for each sample proportion, as outlined
in Sections 12.3, 13.6.3, and 14.6.4.

So, imagine that independent random samples are drawn from distrib-
utions of two independent Bernoulli random variables X and Y; producing
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sample proportions P1 and P2: Each of these, as estimators of the population
proportions �1; �2; is approximately normal in large samples:

Pi s N
�
�i;
�i (1� �i)

ni

�
; approximately,

so that

P1 � P2 s N
�
�1 � �2;

�1 (1� �1)
n1

+
�2 (1� �2)

n2

�
approximately.

The fact that �1 and �2 are unknown requires them to be estimated to
provide another approximate distribution:

T =
(P1 � P2)� (�1 � �2)r
P1 (1� P1)

n1
+
P2 (1� P2)

n2

s N (0; 1) approximately.

An approximate con�dence interval is easily deduced from this as

[CL; CU ] = P1 � P2 � z�=2

s
P1 (1� P1)

n1
+
P2 (1� P2)

n2

with sample value

p1 � p2 � z�=2

s
p1 (1� p1)

n1
+
p2 (1� p2)

n2
:

For hypothesis tests, the same sort of arguments apply: we might wish
to test

H0 : �1 = �2 against HA : �1 6= �2:
The variance of P1 � P2 involves both �1 and �2; which are assumed equal
under the null hypothesis. This type of issue also arose in the case of the
di¤erence of two means in Section 15.1.2, where the population variances are
unknown. It is therefore natural to ask if we should use a pooled estimator
of

� = �1 = �2

to compute an estimator of the variance of P1 � P2: The answer here is
perhaps. Whether or not a pooled estimator of � is used has no e¤ect on
the sampling distribution of the test statistic: it is still N (0; 1) under the
null hypothesis. In the case of the di¤erence of two means the use of the
pooled variance estimator was essential to ensure that we obtained a test
statistic with a t distribution under the null hypothesis.

So, for the sake of simplicity, we will use separate estimators of �1 and �2
in such hypothesis tests, and therefore use the test statistic T above. This
means that hypothesis tests for the di¤erence of two proportions follows
much the same lines as tests on a single proportion.
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15.3 Overview

One can see from the discussion in this section that there are some basic
principles being used in statistical inference, no matter what the speci�c
context nor the speci�c sampling distribution. But it is also unfortunately
true that there are cases where there are serious detail di¤erences that have
to dealt with. It is in this sense that we referred to a catalogue of cases.

15.4 Exercise 9

1. A simple random sample of 15 pupils attending a certain school is
found to have an average IQ of 107:3; whilst a random sample of 12
pupils attending another school has an average IQ of 104:1: Obtain
the 95% con�dence interval for the di¤erence between the mean IQ�s
of the pupils at the two schools when

(a) the true variances of the IQ�s for the children at the two schools
are 39 and 58 respectively;

(b) the true variances are unknown, but the sample variances are 32:5
and 56:5 respectively.

In both cases, state any assumptions you make. For both parts of
the question, do you consider that there is strong evidence that pupils
attending the �rst school have higher mean IQ than those attending
the second?

2. A drug manufacturer has two products which should contain the same
amount of �Super E�additive. As part of the quality control process,
regular tests are to be made to check this. Because of the costs involved
in performing the analysis, these checks are based on small samples.
It has been suspected for some time that Product 2 contains less of
the additive than Product 1. A sample from each product yields the
following results:

Product n �x s2

1 8 147 0:088
2 7 142 0:035

Conduct a hypothesis test at a signi�cance level of 10%; clearly stating
any assumptions you have to make. Do you think these assumptions
are reasonable?

3. The scores of males who play ASTRO (a video game) after drinking a
pint of water are normally distributed with mean �1; whilst the scores



15.4. EXERCISE 9 217

of males who play this game after drinking a pint of beer are normally
distributed with mean �2:

Four male students play ASTRO after drinking a pint of water, and
then again after drinking a pint of beer. The scores are

Name: Chris Martin Alex Nick
After Water 120 125 135 100
After Beer 115 115 95 120

(a) Compute a 95% con�dence interval for the di¤erence in means
�1 � �2: Hint: you will have to calculate a suitable sample vari-
ance.

(b) Brie�y interpret this con�dence interval.

(c) Does it contain the value 0? What would be the interpretation
of this?

(d) Have you had to make any assumptions in computing this con�-
dence interval?

4. In a survey of 60 women and 100 men, 60% of women favour a ban on
smoking in restaurants, whilst 45% of men favour such a ban. Find a
95% con�dence interval for the di¤erence between the proportions of
all men and all women in favour of a ban. State any assumptions you
make in computing this con�dence interval.

5. Using the information in Question 4 of Exercise 6, test the hypothesis
that the proportions of breakdowns to be expected for domestically
produced and imported vans are equal.
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Appendix A

Statistical Tables

Statistical tables for Standard Normal and Student t distributions.

219
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Standard Normal Distribution Function

The table provides values of p where Pr(Z � z) = p.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 .50000 .50399 .50798 .51197 .51595 .51994 .52392 .52790 .53188 .53586
0.1 .53983 .54380 .54776 .55172 .55567 .55962 .56356 .56749 .57142 .57535
0.2 .57926 .58317 .58706 .59095 .59483 .59871 .60257 .60642 .61026 .61409
0.3 .61791 .62172 .62552 .62930 .63307 .63683 .64058 .64431 .64803 .65173
0.4 .65542 .65910 .66276 .66640 .67003 .67364 .67724 .68082 .68439 .68793
0.5 .69146 .69497 .69847 .70194 .70540 .70884 .71226 .71566 .71904 .72240

0.6 .72575 .72907 .73237 .73565 .73891 .74215 .74537 .74857 .75175 .75490
0.7 .75804 .76115 .76424 .76730 .77035 .77337 .77637 .77935 .78230 .78524
0.8 .78814 .79103 .79389 .79673 .79955 .80234 .80511 .80785 .81057 .81327
0.9 .81594 .81859 .82121 .82381 .82639 .82894 .83147 .83398 .83646 .83891
1.0 .84134 .84375 .84614 .84849 .85083 .85314 .85543 .85769 .85993 .86214

1.1 .86433 .86650 .86864 .87076 .87286 .87493 .87698 .87900 .88100 .88298
1.2 .88493 .88686 .88877 .89065 .89251 .89435 .89617 .89796 .89973 .90147
1.3 .90320 .90490 .90658 .90824 .90988 .91149 .91309 .91466 .91621 .91774
1.4 .91924 .92073 .92220 .92364 .92507 .92647 .92785 .92922 .93056 .93189
1.5 .93319 .93448 .93574 .93699 .93822 .93943 .94062 .94179 .94295 .94408

1.6 .94520 .94630 .94738 .94845 .94950 .95053 .95154 .95254 .95352 .95449
1.7 .95543 .95637 .95728 .95818 .95907 .95994 .96080 .96164 .96246 .96327
1.8 .96407 .96485 .96562 .96638 .96712 .96784 .96856 .96926 .96995 .97062
1.9 .97128 .97193 .97257 .97320 .97381 .97441 .97500 .97558 .97615 .97670
2.0 .97725 .97778 .97831 .97882 .97932 .97982 .98030 .98077 .98124 .98169

2.1 .98214 .98257 .98300 .98341 .98382 .98422 .98461 .98500 .98537 .98574
2.2 .98610 .98645 .98679 .98713 .98745 .98778 .98809 .98840 .98870 .98899
2.3 .98928 .98956 .98983 .99010 .99036 .99061 .99086 .99111 .99134 .99158
2.4 .99180 .99202 .99224 .99245 .99266 .99286 .99305 .99324 .99343 .99361
2.5 .99379 .99396 .99413 .99430 .99446 .99461 .99477 .99492 .99506 .99520

2.6 .99534 .99547 .99560 .99573 .99585 .99598 .99609 .99621 .99632 .99643
2.7 .99653 .99664 .99674 .99683 .99693 .99702 .99711 .99720 .99728 .99736
2.8 .99744 .99752 .99760 .99767 .99774 .99781 .99788 .99795 .99801 .99807
2.9 .99813 .99819 .99825 .99831 .99836 .99841 .99846 .99851 .99856 .99861
3.0 .99865 .99869 .99874 .99878 .99882 .99886 .99889 .99893 .99896 .99900

3.1 .99903 .99906 .99910 .99913 .99916 .99918 .99921 .99924 .99926 .99929
3.2 .99931 .99934 .99936 .99938 .99940 .99942 .99944 .99946 .99948 .99950
3.3 .99952 .99953 .99955 .99957 .99958 .99960 .99961 .99962 .99964 .99965
3.4 .99966 .99968 .99969 .99970 .99971 .99972 .99973 .99974 .99975 .99976
3.5 .99977 .99978 .99978 .99979 .99980 .99981 .99981 .99982 .99983 .99983

3.6 .99984 .99985 .99985 .99986 .99986 .99987 .99987 .99988 .99988 .99989
3.7 .99989 .99990 .99990 .99990 .99991 .99991 .99992 .99992 .99992 .99992
3.8 .99993 .99993 .99993 .99994 .99994 .99994 .99994 .99995 .99995 .99995
3.9 .99995 .99995 .99996 .99996 .99996 .99996 .99996 .99996 .99997 .99997
4.0 .99997 .99997 .99997 .99997 .99997 .99997 .99998 .99998 .99998 .99998
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Student�s t Distribution Function for Selected Probabilities

The table provides values of c where Pr(t� � c) = p.

p 0.750 0.800 0.900 0.950 0.975 0.990 0.995 0.9975 0.999 0.9995
� Values of c
1 1.000 1.376 3.078 6.314 12.706 31.821 63.657
2 0.816 1.061 1.886 2.920 4.303 6.965 9.925
3 0.765 0.978 1.638 2.353 3.182 4.541 5.841
4 0.741 0.941 1.533 2.132 2.776 3.747 4.604
5 0.727 0.920 1.476 2.015 2.571 3.365 4.032 4.773

6 0.718 0.906 1.440 1.943 2.447 3.143 3.707 4.317 5.208
7 0.711 0.896 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781
10 0.700 0.879 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.697 0.876 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.690 0.865 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.688 0.861 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.686 0.859 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768
24 0.685 0.857 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.684 0.856 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.681 0.851 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
70 0.678 0.847 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435
80 0.678 0.846 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416

90 0.677 0.846 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402
100 0.677 0.845 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
110 0.677 0.845 1.289 1.659 1.982 2.361 2.621 2.865 3.166 3.381
120 0.677 0.845 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373

1 0.674 0.842 1.282 1.645 1.960 2.326 2.576 2.808 3.090 3.297


