
Using data from Round 9 of the 2018 European Social Survey, the exercises below will show you how 
to perform one-sample significance tests in R. 

To download the data, visit the ESS Website and navigate to the Data and Documentation menu and 
select ESS Data Portal from the drop-down menu. You will now be taken to a new page; click on ESS 
round 9 (2018). On the new page, scroll down to Data Files and click on the Download button next 
to the ESS9 - integrated file, edition 3.1 heading. You will then be taken to a new page which will 
require you to provide your registration details. After providing this information, you will then be able 
to select the download format. 

Download the data in Stata format. 

1. Preparing and Exploring Data 

For this practical, you will need the following packages: haven and tidyverse. 

library(tidyverse) 
library(haven) 

We import the the ESS9 data file into an object called ess9. 

To facilitate your work in this course unit, remember to set up a folder for this unit and create an R 
project or set your working directory prior to beginning the practicals. It is recommended that you 
download and place the data for the practicals in a separate sub-folder as I have done here (my data 
file is in a folder called data.) 

ess9 <- read_dta("data/ESS9e03_1.dta") 

1 

https://www.europeansocialsurvey.org/
https://www.europeansocialsurvey.org/


We find that the dataset has 49519 observations of 572 variables; as you’ll remember, we can find this 
information by looking in our Environment tab or using functions such as dim(). To obtain a summary 
view of the data object, glimpse() is not recommended in this case because the dataset is very large 
so a more suitable compact view can be achieved with the head() function. 

head(ess9) 

## # A tibble: 6 x 572 
## name essround edition proddate idno cntry dweight pspwght pweight anweight 
## <chr> <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> 
## 1 ESS9e0~ 9 3.1 17.02.2~ 27 AT 0.581 0.218 0.302 0.0659 
## 2 ESS9e0~ 9 3.1 17.02.2~ 137 AT 1.06 0.413 0.302 0.125 
## 3 ESS9e0~ 9 3.1 17.02.2~ 194 AT 1.38 2.27 0.302 0.686 
## 4 ESS9e0~ 9 3.1 17.02.2~ 208 AT 0.993 0.386 0.302 0.117 
## 5 ESS9e0~ 9 3.1 17.02.2~ 220 AT 0.377 1.03 0.302 0.312 
## 6 ESS9e0~ 9 3.1 17.02.2~ 254 AT 1.48 0.576 0.302 0.174 
## # i 562 more variables: prob <dbl>, stratum <dbl>, psu <dbl>, nwspol <dbl+lbl>, 
## # netusoft <dbl+lbl>, netustm <dbl+lbl>, ppltrst <dbl+lbl>, 
## # pplfair <dbl+lbl>, pplhlp <dbl+lbl>, polintr <dbl+lbl>, psppsgva <dbl+lbl>, 
## # actrolga <dbl+lbl>, psppipla <dbl+lbl>, cptppola <dbl+lbl>, 
## # trstprl <dbl+lbl>, trstlgl <dbl+lbl>, trstplc <dbl+lbl>, trstplt <dbl+lbl>, 
## # trstprt <dbl+lbl>, trstep <dbl+lbl>, trstun <dbl+lbl>, vote <dbl+lbl>, 
## # prtvtcat <dbl+lbl>, prtvtdbe <dbl+lbl>, prtvtdbg <dbl+lbl>, ... 

Let’s say we are interested in the trstprl variable. We can use the attributes() function to find out 
that it measures degree of trust in parliament on an ordinal scale (0, or not trust at all, to 10, or complete 
trust). We also find out that the “Refusal”, “Don’t know”, and “No answer” categories are denoted as NA. 
Remember that understanding your variables is crucial prior to analysis to ensure that you apply the 
correct statistical tests and draw appropriate conclusions. 

attributes(ess9$trstprl) 

## $label 
## [1] "Trust in country's parliament" 
## 
## $format.stata 
## [1] "%4.0g" 
## 
## $class 
## [1] "haven_labelled" "vctrs_vctr" "double" 
## 
## $labels 
## No trust at all 1 2 3 4 
## 0 1 2 3 4 
## 5 6 7 8 9 
## 5 6 7 8 9 
## Complete trust Refusal Don't know No answer 
## 10 NA NA NA 

It is also important to find out the number of observations in each category when dealing with this 
type of variables, and the number of many missing values (if any). One way to do this is to use the 
count() function. There are two principal reasons why this is important. Firstly, you must determine 
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if there are a sufficient number of observations and/or whether missing values predominate in com-
parison to the total sample size of the survey. If missing values predominate and only a small number 
of observations is available for the categories, then that might indicate that the variable may not be 
representative. Also, missing values will affect the results of descriptive statistics functions, and so 
they must be removed when performing the calculations. 

In this particular example, we can see that by comparison, the number of missing values is small and 
each category of the variable has a large number of observations. 

count(ess9, trstprl) 

## # A tibble: 12 x 2 
## trstprl n 
## <dbl+lbl> <int> 
## 1 0 [No trust at all] 5414 
## 2 1 [1] 2561 
## 3 2 [2] 3937 
## 4 3 [3] 5121 
## 5 4 [4] 4737 
## 6 5 [5] 8461 
## 7 6 [6] 5632 
## 8 7 [7] 5830 
## 9 8 [8] 4128 
## 10 9 [9] 1396 
## 11 10 [Complete trust] 1158 
## 12 NA(b) [Don't know] 1144 

To learn more about the trstprl variable, we can use the summarise() function to find out the total 
number of observations, mean, median, and standard deviation. We have a large sample size (over 
48,000 observations!). We can also see that the median and the mean are not very different, but are 
not equal either. This is an expected phenomenon for ordinal variables. 

ess9 %>% 
drop_na(trstprl) %>% 
summarise(n = n(), 

mean = mean(trstprl), 
median = median(trstprl), 
sd = sd(trstprl) 

) 

## # A tibble: 1 x 4 
## n mean median sd 
## <int> <dbl> <dbl> <dbl> 
## 1 48375 4.52 5 2.66 
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2. Significance Test for a Mean 

We will now perform a two-sided significance test. Previous research has shown that trust in Parlia-
ment was 5 on average and we want to find out whether this still the case or whether it has changed 
and we want to base our decision using a 0.95 confidence level. 

We first write down the null and alternative hypotheses for this test. 

𝐻0 ∶ 𝜇 = 5 

𝐻𝑎 ∶ 𝜇 ≠ 5 

Base R does not have a dedicated function to calculate either the standard error or the z-statistic. As 
a result, you must either create your own functions, perform the calculations in steps, or both. This is 
another reason why you must ensure that you understand how the formulae discussed in the lectures 
work and how they are constructed. 

As you already know, the standard error is calculated by dividing the sample standard deviation by the 
square root of the sample size. One way is to use the base R approach to first calculate the sample 
size and standard deviation separately, and store them in separate objects. 

n_trstprl <- sum(!is.na(ess9$trstprl)) 

n_trstprl 

## [1] 48375 

sd_trstprl <- sd(ess9$trstprl, na.rm = TRUE) 

sd_trstprl 

## [1] 2.664302 

Now we use these two data objects to calculate the standard error by dividing the sd_trstprl by the 
square root of the n_trstprl object and store it in an object called se. 

se_trstprl <- sd_trstprl/sqrt(n_trstprl) 

se_trstprl 

## [1] 0.01211359 

Since the sample size is large, we can use the z-score as our test statistic. We calculate our z-statistic by 
dividing the difference between our predicted value (i.e. the score for neutrality) from the calculated 
mean by the standard error. 

First, we calculate the mean and store it in an object. 

mean_trstprl <- mean(ess9$trstprl, na.rm = T) 
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Now we use this object and the se_trstprl object to calculate the z-score and store is it in an object 
called z_trstprl. Note how the numerator is placed between brackets; remember that R will not know 
the order in which to perform mathematical operations so the absence of the bracket will produce an 
incorrect result. 

z_trstprl <- (mean_trstprl - 5)/se_trstprl 

z_trstprl 

## [1] -39.34162 

Our z-score is -39.3416 which seems to be quite a large negative value but how do we compare it? 

Now let’s consider what the critical region for a 5% two-tailed z-test is. 

Remember that we have to consider both tail probabilities, the right and the left; for a normal distribu-
tion, 95% of the observations fall above -1.96 standard deviations and below 1.96 standard deviations 
from the mean. Since the standard normal uses the standardised values (i.e. the z-scores), then for a 
two-tailed test, there will be two critical (rejection) regions, above a z score of 1.96 and below a z-score of 
-1.96. Conversely, if the z score is between -1.96 and 1.96, then it falls within the acceptance region 
and there is no evidence to reject the null hypothesis. 

Hence, if the calculated z score is larger than 1.96 OR smaller than -1.96, this means that the value is 
not part of the 95% of observations than fall between -1.96 and 1.96 from the mean; instead, it falls in 
the rejection region(s). Therefore, we have evidence to reject the null hypothesis. The -1.96 and 1.96 
values are also referred to as “cut-off points” or “critical values”. 

The cut-off point(s) can also be calculated in R using the qnorm() function. This function provides 
percentiles for the standard normal distribution given a user-defined probability. In this case, we have 
a two-tailed probability which is equal to the alpha value (0.05). As you’ll remember from the lectures, 
this alpha value is the total probability for both tails (the sum of 0.025 in the right tail and 0.025 in the 
left tail) that the null hypothesis is rejected when in fact it is true (or the Type I error). 

Hence, what we doing is finding the z-score for 0.025 probability so, we divide 0.05 by 2. By default, 
the qnorm() function will provide a z-score for the lower tail and so the z-score will be negative. 

qnorm(0.05/2) 

## [1] -1.959964 

To produce a positive z-score, we can set the lower.tail argument to FALSE which will then yield the 
right-tail z-score. As you can see, the z-score is now positive 1.96 and therefore, our cut-off point is 
±1.96 for a two-tailed test. To find the cut-off point for a two-tailed test, you do not need to run both 
functions since the absolute value of the z-score is the same. You can simply use the below and specify 
the cut-off point as ±1.96. 

qnorm(0.05/2, lower.tail = FALSE) 

## [1] 1.959964 

Our calculated z-score of -39.3416 does not fall between ±1.96. Therefore, there is evidence to reject 
the null hypothesis. However, let’s formalise our conclusion with the p-value. 

Let’s find the p-value for the z-score we calculated (-39.3416). To do so, we can use the pnorm() base 
R function which provides the probabilities of variable values occurring under the standard normal 
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distribution assumption. In other words, the function provides the probability of z-scores and provides 
the same results you would obtain from a standard normal distribution table. The function can be 
used for both one-tailed and two-tailed tests and it can be considered to be the inverse of the qnorm() 
function. Whereas qnorm() can provide z-scores, the pnorm() function provides probabilities. 

As with qnorm(0), the pnorm() function also provides left-tail probabilities by default. To obtain the 
correct p-value for a two-tailed test, then there are a couple of things to add to the function. 

Fist, for two two-tailed probabilities, you must multiply the obtained p-value by 2 since there are two 
tails (remember the symmetry feature of the normal distribution). 

Second, the lower.tail argument must be set to FALSE. 

Third, the z-score must be wrapped which the abs() function. This provides the absolute value for any 
value (i.e. removes the negative sign if the value is negative). 

2 * pnorm(abs(z_trstprl), lower.tail = F) 

## [1] 0 

The p-value is 0. Since this is less than our significance level (0.05), we reject the null hypothesis. This 
means that the data does not support the claim that the mean trust in the parliament was on average 
5. 
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3. Significance Test for a Proportion 

We are now going to explore how to perform a two-sided significance test for a proportion at 0.95 con-
fidence level. Let’s say that we know from previous studies that the population mean vote attendance 
in the EU in 75% and we want to find out if this is still the case. 

If we explore the vote variable using the attributes() function, we find out that this is a nominal 
variable with three main categories, “Yes”, “No”, and “Not eligible to vote”, designated by numeric labels 
1 to 3 respectively, and that three categories are designated for NA values. 

attributes(ess9$vote) 

## $label 
## [1] "Voted last national election" 
## 
## $format.stata 
## [1] "%3.0g" 
## 
## $class 
## [1] "haven_labelled" "vctrs_vctr" "double" 
## 
## $labels 
## Yes No Not eligible to vote 
## 1 2 3 
## Refusal Don't know No answer 
## NA NA NA 

We also find out that the variable is of type “double” when it should be factor (given that it is nominal). 
However, we do not need to transform it into a factor for significance tests (but you may want to do 
so for visualisations). 

For our analysis, we are only interested in those survey participants who voted or did not vote, so we 
will leave the “Yes” and “No” categories labelled numerically as 1 and 2 respectively and drop all other 
categories (including any missing values) to create a new variable called vote_binary. Note: to keep 
the 1 and 2 values numeric, do not place them between double inverted commas (remember that if 
you do, they will be transformed to character values.) 

ess9 <- ess9 %>% 
mutate(vote_binary = case_when(vote == 1 ~ 1, 

vote == 2 ~ 2)) %>% 
drop_na(vote_binary) 
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As you can see, the vote_binary is now a binary variable with numeric labels. 

count(ess9, vote_binary) 

## # A tibble: 2 x 2 
## vote_binary n 
## <dbl> <int> 
## 1 1 35505 
## 2 2 9728 

Now let’s specify our hypotheses. 

𝐻0 ∶ 𝜋 = 0.75 

𝐻𝑎 ∶ 𝜋 ≠ 0.75 

There are many ways to calculate proportions in R, as you already know (e.g. using the janitor pack-
age). Another way is of course, using base R. 

To create a proportions table with base R, wrap the table() function within the prop.table() function. 
The table() function simply displays the frequencies of each category of the variable and is the equiv-
alent of the count() function except that the former does not display missing data. The prop.table() 
simply calculates the conditional proportions. 

prop.table(table(ess9$vote_binary)) 

## 
## 1 2 
## 0.7849358 0.2150642 

For our significance test, we are only interested in the proportion for the “Yes” category. This category 
represents the first column of the table, so we subset this value by placing the index value of one 
between square brackets at the end of the argument and save this value in an object called prop_vote. 
Note: remember that when specifying indices which represent column or row numbers, these are 
integers so we do not add double inverted commas. We will use this value later when we calculate the 
z statistic. 

prop_vote <- prop.table(table(ess9$vote_binary))[1] 

For our calculations, we also need the total number of observations. 

n_vote <- sum(ess9$vote_binary) 

n_vote 

## [1] 54961 
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We now calculate the standard error under the presumption that the null hypothesis is true, by dividing 
the product of the null hypothesis proportion and 1 minus the null hypothesis proportion, by the total 
number of observations. 

se_vote <- sqrt((0.75 * (1 - 0.75))/n_vote) 

se_vote 

## [1] 0.001847027 

To then calculate the z-statistic, we subtract our null hypothesis proportion from the sample proportion 
we calculated earlier, and divide this result by the standard error. 

z_vote <- (prop_vote - 0.75)/se_vote 

z_vote 

## 1 
## 18.9146 

Finally, we find the p-value associated with the calculated z-score. Note that since we know that the 
z-score is positive, we no longer need to use the abs() function. 

2 * pnorm(z_vote, lower.tail = F) 

## 1 
## 8.647964e-80 

The p-value is extremely small (8.647964e-80). Since this is less than our significance level (0.05), we 
reject the null hypothesis that the population mean vote attendance in the EU is 75%. 

When numbers are extremely small or large, R provides them in exponential (scientific) notation; in 
this case, the p-value is translated as 0.0000……and many other zeroes……..205988 (or in other words, 
2.05988 to minus 88 power). 

If you are unfamiliar with this type of notation, please have a look at the following resource https: 
//www.graphpad.com/support/faq/what-does-it-mean-when-some-results-have-e-in-the-number/ 

If you want to find out how numbers are represented in different formats, you can use an online 
number converter such as: https://www.calculatorsoup.com/calculators/math/scientific-notation-
converter.php 
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