Centre for Digital Trust and Security

Seedcorn Final Report 23/24

Project Title:
Formal Software Verification with Large Language Models in the Loop

Project Investigators:
Mustafa Mustafa (PI), Meropi Tzanetakis (Co-1), Lucas Cordeiro (Co-l), Youcheng Sun (Co-l), Laura McCulloch
(RA), Yiannis Charalambous (Collaborator), Edoardo Manino (Collaborator)

Project overview:

This project addresses the widespread deployment of software, which often comes with security
vulnerabilities. The aim is to integrate Large Language Models (LLMs) with formal verification
methodologies to improve the generation and verification of secure code. Formal verification will be
employed to identify security vulnerabilities and produce counterexamples when the code does not work
correctly or violates security standards. These counterexamples, along with the problematic code, will then
be fed into the LLM using a specialised prompt language designed for debugging and code generation. This
approach will help diagnose and rectify security issues. The corrected code generated by the LLM will
undergo formal verification to ensure its security. A prototype connecting a verifier with ChatGPT will be
used, and publicly available code will be utilised to evaluate the method. Additionally, social science
methods will be deployed to assess software developers' perceptions of LLM-enhanced formal verification
tools.

Key findings:

Technical perspective

We have successfully integrated Large Language Models (LLMs) into one of our formal verification tools -
ESBMC-AI. Our results show that LLMs can successfully be used to debug code when fed with
counterexamples produced by a verification tool. However, more research is needed to fine-tune LLMs into
improving their success rate.

More specifically, we used GPT-3.5-Turbo and various prompt engineering techniques to explore how well
an LLM could repair a mutated code. In the process, we discovered that a long persona prompt with the
role Automated Code Repair Tool is the most optimised at repairing Al Code. We then proposed methods
for extracting the faulty source code from the large volume of Al code to circumvent the issues that arise
due to LLMS' relatively small context window. Lastly, we used ESBMC-AI to test how the iterative
Automated Programme Repair (APR) process improves repair performance. Some take-away messages are
given below:

e Formal verification with LLM in the loop increases the automated program repair performance
when LLM is given multiple attempts. The best number of attempts is 3 for prompts 9 and 11, as a
successful repair becomes unlikely after the 2nd retry.

e Showing the history of patches to the LLM improve the performance of iterative APR. When
comparing the number of successful repairs between the Latest State Only (LSO) experiments and
the Forward History experiments, the latter has a much higher number of successful repairs.

e The best format to show the history is to display the oldest messages first and the last message
being the latest. This has been observed when comparing Forward History and Reverse History.

e The optimal temperature to achieve the highest number of repaired samples is 0.0 (i.e.,
deterministic output) for prompts 9 and 11 for Forward History. A higher temperature is necessary
for less conventional prompts to allow the LLM to parse it correctly.

In summary, we have showed that the iterative repair process provides a substantial increase in repair
performance (from 18% APR success w/o iteration to 23% success with iteration). We also found that after
attempt 3 the chances of successfully repairing a sample decrease significantly.




In the future, we plan to conduct more experiments using a diverse set of LLMs to discover whether our
findings generalize beyond GPT-3.5-Turbo. In this respect, open-source LLMs would benefit our research, as
they can be fine-tuned for program repair.

Social perspective

With the successful integration of LLMs into our formal verification tools, the open question that needs to
be addressed is how the improved verification tools are perceived by practitioners working in the industry.
This requires a qualitative research approach covering complex social phenomena.

We have successfully conducted 26 semi-structured interviews with software developers and software
engineers. These qualitative in-depth interviews aim to explore how practitioners perceive and use formal
verification tools when identifying bugs in large software systems.

e Software developers and engineers generally find formal verification tools accurate, with few false
positives. However, tolerance for false positives varies depending on company objectives. While
some developers rely solely on these tools, others use them alongside testing to ensure bug-free
software. Verification tools are employed at different workflow stages, complementing other
techniques rather than replacing them.

e Interview results indicate that scalability influences tool usage, particularly under tight deadlines.
Developers prioritise fixes based on risk, especially in complex systems, balancing time and labour
costs. A disconnect exists between developers and management, with managers sometimes
viewing these tools as an extra cost, driven by cost-benefit analyses rather than technical necessity.

e Software developers and engineers might avoid these tools due to unfamiliarity with the
programming languages used and the steep learning curve involved. High labour costs and lack of
time during work hours further discourage usage, often requiring personal time investment.
Additionally, the instructions on how to use these tools is perceived as overly complex and not
user-friendly, often written by specialists for specialists, making it difficult for those without specific
training to understand.

Future research focussing on the social aspects should focus on the perceptions and practices of developers
and engineers across various industry contexts who use verification tools to address security vulnerabilities.
This approach can help improve the application of LLM-enhanced formal verification tools.

Outputs to date:

e A prototype implementation of a formal verification tool with an LLM integrated for generating
possible fixes of the identified bugs.

e We have successfully conducted 26 semi-structured interviews with software developers and
software engineers, yielding valuable insights into our study's focal points. Transcripts from these
interviews have been thoroughly compiled, serving as foundation for our ongoing data analysis.

e Dissemination through conference paper presentation: 36th Annual Meeting of the Society for the
Advancement of Socio-Economics (SASE), 27-29 June 2024, University of Limerick

e Technical report “Automated Repair of Al Code with Large Language Models and Formal
Verification” has been written: https://arxiv.org/pdf/2405.08848.

e Atechnical report “Tasks People Prompt: A Taxonomy of LLM Downstream Tasks in Software
Verification and Falsification Approaches” has been written: https://arxiv.org/pdf/2404.09384.

Were all planned outcomes achieved?
If not, how did you mitigate non-achievement?

All key outcomes have either been achieved or are on track to be delivered as follow-up activities.




Planned activities post-project:

e Knowledge exchange activities in the form of a findings briefing event at the University of
Manchester with our research participants on 2" October 2024, which is supported by Business
Engagement Manager Rachel Kenyon

e Collaborative paper (with a tentative title “/t’s made from researchers to researchers“- The
Challenges of using Automated Software Verification Tools) to be submitted to a top tier venue
(IEEE S&P) in November 2024.

e Both technical reports, “Automated Repair of Al Code with Large Language Models and Formal
Verification” and “Tasks People Prompt: A Taxonomy of LLM Downstream Tasks in Software
Verification and Falsification Approaches”, to be submitted to top venues.

e Alarge EPSRC grant application to be submitted in AY 2024/25.

e Dagstuhl Seminar application to be submitted in AY 2024/25.

e A workshop on the topic to be organised jointly by The University of Manchester and University of
Liverpool in summer 2025.




