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MAKING THE MOST OF POTENTIAL: POTENTIAL GAMES
AND GENOTYPIC CONVERGENCE

OMER EDHAN, ZIV HELLMAN & ILAN NEHAMA

ABSTRACT. We consider genotypic convergence of populations
and show that under fixed fitness asexual and haploid sexual pop-
ulations attain monomorphic convergence (even with linkage dis-
equilibrium) to basins of attraction with locally exponential con-
vergence rates; the same convergence obtains in single locus diploid
sexual reproduction but to polymorphic populations. Further-
more, we show that there is a unified underlying theory underly-
ing these convergences: all of them can be interpreted as instantia-
tions of players in a potential game implementing a multiplicative
weights updating algorithm to converge to equilibrium, making
use of the Baum–Eagon Theorem. To analyse varying environ-
ments, we introduce the concept of ‘virtual convergence’, under
which, even if fixation is not attained, the population nevertheless
achieves the fitness growth rate it would have had under conver-
gence to an optimal genotype. Virtual convergence is attained
by asexual, haploid sexual, and multi-locus diploid reproducing
populations, even if environments vary arbitrarily. We also study
conditions for true monomorphic convergence in asexually repro-
ducing populations in varying environments.

1. INTRODUCTION

One of the central questions of evolutionary theory has long been
identifying conditions for asymptotic convergence to fixation on a
monomorphic population. The classical example of such a result
is the simplest case of asexual reproduction without mutation (e.g.,
bacteria reproducing in a petri dish) in which a version of the funda-
mental theorem of natural selection obtains: the mean fitness of the
population, which follows the dynamic of the replicator equation, in-
creases monotonically, leading to asymptotic fixation to a monomor-
phic population consisting of an optimal genotype with respect to
the fitness environment.

Ziv Hellman and Ilan Nehama acknowledge research support by Israel Science
Foundation grant 1626/18.
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Even this strong result, however, fails to hold once one considers
arbitrarily varying fitness environments over time, even in asexually
reproducing populations; in sexually reproducing populations the
matter is more complicated still. In this paper we consider the gen-
eral question of genotypic convergence of populations implement-
ing various reproductive strategies under conditions of both fixed
and varying environments. To this end we also introduce a concept
that we term ‘virtual convergence’, applying ideas originally devel-
oped for the study of algorithms.

In greater detail, we consider here three discrete time population
reproductive strategies: asexual, haploid sexual, and diploid sexual.
The relevant state spaces for all of these is a polytope Θ. In the asex-
ual case Θ = ∆(Γ), the space of probability distributions over the set
Γ of possible genotypes; what is of interest is tracing over time the
relative frequency of the genotypes. In the sexual cases the focus in-
stead is on the relative frequency in the population of alleles at each
locus; if there are m loci with k + 1 alleles per locus, the polytope of
interest is Θ = ∆k

1 × . . .×∆k
m.

The dynamics considered will in general be describable by a trans-
formation T : Θ → Θ. That is, if the population is at state θ ∈ Θ at
time t, under the model it will be in state T (θ) at time t + 1. The
main matter studied is then the asymptotics of the trajectory defined
by T n(θ), starting from any θ, as n increases. If for each initial point
x ∈ Θ there is a point y ∈ Θ such that limn→∞ T

n(x) = y then the
dynamic converges polymorphically; if y is a point distribution in
∆k
i for each 1 ≤ i ≤ m then the convergence is monomorphic.

1.1. Fixed Environments and Convergence in Potential Games. The
first question we consider asks which of these dynamics is guaran-
teed to converge, either monmorphically or polymorphically, when
environments are fixed and unchanging over time, and we show that
the asexual replicator dynamic, the sexual haploid dynamic – even
under linkage disequilibrium, entirely off the Wright manifold – and
the single-locus diploid dynamic all converge.

Furthermore, we provide a unified explanation for the conver-
gence of all of these dynamics in the discrete time setting: all of
them may be considered to be manifestations of potential games in
which the players monotonically increase the mean potential payoff
by application of a multiplicative weights updating algorithm and
exploiting the Baum–Eagon Theorem. When analysing discrete time
dynamics, the standard tools of continuous time gradient climbing,
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which depend on partial derivatives, are not available. The Baum–
Eagon inequality (see Section A), which was originally intended for
application to the study of hidden Markov models, provides an al-
ternative tool that has proven to be extremely relevant to analysing
discrete time evolutionary models.

The Baum–Eagon Theorem is also an essential element in our proof
of a general theorem that players in a potential game independently
implementing polynomial multiplicative weights updating algorithms
will asymptotically converge to a fixed point that is a Nash equi-
librium. The surprising element of this theorem is that monotonic
climbing of the mean potential payoff is attained even though there
is no coordinating element to the updating of the players, each of
whom updates based on the private information of the stage pay-
off received without explicitly taking into account the payoffs and
updated distributions of the other players.

This is especially pertinent to our study of convergence in the
sexual haploid model, where the dynamic can be described as an
identical interests game being played by the loci, with the objective
being identifying an optimal genotype; the theorem shows that the
replicator dynamic conducted independently amongst the alleles at
each locus, which is the essence of the sexual reproduction model, is
guaranteed to converge. The exception to all this is the multi-locus
diploid model under linkage disequilibrium, where the disequilib-
rium term prevents application of the Baum–Eagon inequality, and
in fact it has long been known that convergence under that model is
not guaranteed.

A further advantage of undergirding the fixed environment the-
orems by appeal to the Baum–Eagon Theorem is that it enables us
to make use of theorems from [Baum and Sell, 1968] to obtain finer
resolution insights into the dynamic paths followed by population
along the way towards convergence. This includes the fact that sur-
rounding each pure Nash equilibrium there exists a basin of attrac-
tion, and even more strongly a basin of attraction that is exponen-
tially stable. This implies that an observer following a path through
the state space (including that of any potential game in which the
players are implementing the polynomial multiplicative weights up-
dating algorithm) will for a long time register relatively small in-
creased in mean payoff until the path enters the exponental basin
of attraction, at which point an acceleration will be noted with ex-
ponentially fast convergence to a fixed point of local maximal mean
payoff.
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Reproduction Fixed fitness conver-
gence

Varying fitness conver-
gence

Asexual Monomorphic Virtual
Haploid Monomorphic Virtual
Single Locus Diploid Polymorphic Virtual
Multi-Locus Diploid Virtual Virtual

Figure 1. Summary of modes of convergence.

1.2. Varying Environments and Virtual Convergence. When envi-
ronments vary, sufficiently wildly varying environments from one
time period to the next can make it impossible for the dynamic to
converge to any single population state in Θ. To contend with this
we introduce here a new concept of ‘virtual convergence’. This is de-
fined using tools borrowed from computer science and introduced
to the population genetics literature in the past decade, which in-
volve regret minimisation algorithms. The metaphor often used to
describe this approach is that of selecting an action with respect to
varying payoff functions in subsequent time periods based on ad-
vices offered by a collection of experts. The objective is attaining
asymptotically the payoff that would have been achieved had one
followed from the start the advice of the best expert in hindsight in
every time period; a no regret algorithm achieves this objective.

In the evolutionary setting, the analogues of the experts of the pre-
vious paragraph are genotypes and the payoffs are fitness values.
The question then becomes: is it the case that, no matter what se-
quence of environments and hence fitness values is realised, the re-
producing population asymptotically attains the mean fitness that is
the growth rate that it would have achieved had it been comprised
from the start monomorphically by the optimal-in-hindsight geno-
type? If yes, then we say that virtual convergence is attained.

With these definitions, we study here modes of convergence for
the asexual, haploid sexual, and diploid sexual reproduction, var-
iously under linkage equilibrium and disequilibrium, fixed fitness
and varying fitness conditions.1 A summary of some of the results
appears in Figure 1.

1 In all models in this paper generations are discrete and non-overlapping, pop-
ulations are infinite, and no mutation, migration, or genetic drift is included in the
models.
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As can be seen in the summary, all of the reproduction models
studied here attain virtual convergence, no matter how wildly envi-
ronments vary. They attain this by exploiting the regret minimisa-
tion aspect of the multplicative weights updating algorithm.

In a sense, it can be said that the reproductive models are oppor-
tunistic: when environments are sufficiently well-behaved and they
can take advantage of the payoff climbing afforded by the Baum–
Eagon inequality, they will do so to converge to Nash equilibrium.
If that is not available, then even under the worst possible condi-
tions they will at least attain virtual convergence, minimising regret
in hindsight.

1.3. Non-arbitrarily Varying Environments. The gap between fixed
environments and entirely arbitrarily varying environments is large.
The subject of convergence when environments vary in a structural
way is explored here only with respect to the asexual replicator model,
where we show that convergence to a monomorphic population is
guaranteed under ergodically varying environments and under a
broader property we introduce that we call one-step-ahead superi-
ority.

There is much scope remaining to be researched in this topic, which
we leave to future papers.

2. BASIC MODELS AND NOTATION

2.1. Simplices. For an integer m, ∆m denotes the standard finite di-
mensional simplex over m+1 points. For a finite set Γ, ∆(Γ) denotes
the collection of probability mass functions over the elements of Γ.
We will denote the subset of ∆(Γ) consisting of distributions with
support on one element of G alone by ∆1(Γ), and the element of
∆1(Γ) placing all support on g ∈ Γ will be denoted by 1g.

2.2. Potential Games. Let I be a finite set of m players. Associate
with each player i a finite set of actions Ai. Denote A = A1 × . . . ×
Am, and the cross product of all action sets except from i by A−i. A
game is defined by a payoff function u : A → Rm. The projection
of the payoff function to the payoff of player i is denoted ui(ai, a−i).
Payoff functions extend in the obvious multi-linear manner to payoff
functions of mixed strategies.

An identical interests game is a game satisfying the property that
ui(a) = uj(a) for each a ∈ A and each i, j ∈ I . A potential game is
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game with a potential function Φ : A→ R satisfying for all a−i ∈ A−i
and all a′i, a′′i ∈ Ai,

Φ(a′i, a−i)− Φ(a′′i , a−i) = ui(a
′
i, a−i)− ui(a′′i , a−i).

An ordinal potential game is game with a potential function Φ : A→
R satisfying for all a−i ∈ A−i and all a′i, a′′i ∈ Ai,

Φ(a′i, a−i)− Φ(a′′i , a−i) > 0 ⇐⇒ ui(a
′
i, a−i)− ui(a′′i , a−i) > 0.

Every identical interests game is a potential game and every po-
tential game is an ordinal potential game.

2.3. The Discrete Replicator Equation. Much of the background ma-
terial for the population genetics models here is from [Bürger, 2000]
and [Edwards, 2000].

Time is discrete and denoted by positive integers t. Let f t : ∆m →
Rm be given for each time t, with f ti : ∆m → R for each 1 ≤ i ≤ m
being the standard coordinate projection of f t.

The mean value function associated with f t, denoted f
t
, maps θ ∈

∆m to R by
f
t
(θ) :=

∑
1≤i≤m

θif
t
i (θ).

The discrete replicator equation is then the recursive mapping from
∆m to ∆m defined by

(1) θt+1
i := θti

f ti (θ)

f
t
(θ)

.

2.4. Alleles and Genotypes. The model assumptions which will be
maintained throughout are that populations are infinite (i.e., only
proportions of genotypes and alleles in the population are of inter-
est, not absolute numbers), that generations are discrete and non-
overlapping, that selection occurs but not mutation or migration,
and that stochastic genetic drift over time does not occur.

We assume that each gentoype is composed ofm genetic loci. Each
locus i is associated with a set of alleles Ai composed of k+ 1 alleles.
A genotype is then formally a string g = a1a2 . . . am, such that ai ∈ Ai

for each 1 ≤ i ≤ m. Denote the collection of all possible genotypes
by Γ.

At each time t there is an adult population Πt composed of indi-
viduals, each of which bears a genotype g ∈ G. The sub-population
of individuals bearing genotype g at time t is denoted Πt

g.
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The adults in the population at time t in reproduce (asexually, hap-
loid sexually, or diploid sexually, depending on the particular model
being studied). After the adults in population Πt reproduce, an off-
spring population Ωt comes into existence. The sub-population of
individuals bearing genotype g at time t is denoted Ωt

g.
Denote by dtg ∈ ∆(Γ) the weight or relative proportion of genotype

g at time t in the offspring population, i.e. the proportion of the set
Ωt
g in Ωt. At the beginning of period t + 1, the adult population Πt

dies, and as the individuals in Ωt attain maturity they form the adult
population Πt+1.

A selection fitness value wtg ∈ [0, 1] is associated with each geno-
type g at each time t. This is interpreted as the probability that an off-
spring individual bearing genotype g in population Ωt will survive
and attain reproductive maturity as an adult in population Πt+1.

2.5. Asexual (Clonal) Reproduction Model. In this model, at each
time t each individual in Πt

g produces ζ offspring (where ζ is a pos-
itive integer), each of whom bears the same genotype g as its par-
ent. The offspring thus produced in population Ωt then mature into
the adults in population Πt+1, subject to selection as determined by
{ωtg}ω∈Γ.

The relevant state space of the dynamic is the simplex ∆(Γ). The
mean fitness at time t is

(2) wt :=
∑
g∈Γ

dtgw
t
g.

In models in which wtg is constant over time we may suppress the
time denotation and simply write wg, and hence wt =

∑
g∈Γ d

t
gwg.

The dynamics of asexual reproduction are governed by the asex-
ual replicator equation as the equation of motion,

(3) dt+1
g = dtg

wtg
wt
.

This follows the schema of Equation (1), with the fitness wtg in the
role of fi and w corresponding to f .

It will sometimes be convenient to express Equation (3) generically
as

(4) d+
g = dg

wg
w
,

suppressing reference to t when its value is clear from context.
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2.6. Haploid Sexual Reproduction Model. This model will be cen-
tral to much of the paper, hence we present its assumptions here in
some detail. We suppose a monoecious sexually reproducing hap-
loid population, with panmictic mating occuring in pairs. Initially
it will be supposed that there is no linkage between loci, i.e., each
offspring at each locus bears the allele of one of the parents at the
corresponding locus with equal probability. This assumption will be
relaxed subsequently.

We will sometimes denote allele j at locus i by aij,where 1 ≤ i ≤ m
and 1 ≤ j ≤ k + 1, when convenient without confusion by context.
When it is important to distinguish the j-th allele in locus i from the
j-th allele at locus i′, we will explicitly write aiji . Let Caiji denote
the collection of all possible genotypes that contain aiji at the slot for
locus i. Write Πt

aiji
:=
⋃
g∈Caiji

Πt
g and Ωt

aiji
:=
⋃
g∈Caiji

Ωt
g.

Denote by qtiji the allelic frequency of allele aiji at locus i at time
t in population Ωt, i.e., qtiji is the proportion of Ωt

aiji
in Ωt. Call

qti = {qtij}1≤j≤k+1 the allelic frequency distribution of locus i at t; this
is an element of a k-simplex, which we will denote ∆k

i . The relevant
phase space for studying the evolutionary dynamic is then a poly-
tope composed of an m-cross product of simplices:

(5) Θ := ∆k
1 × . . .×∆k

m.

The topology for studying convergence is the product topology of
the simplices regarded as manifolds.

Going from ∆(Γ) to Θ is always possible, since we defined qtiji as
the proportion of Ωt

aiji
in Ωt for each aiji . Denote the mapping thus

defined by ρ : ∆(Γ)→ Θ.
For g = a1j1 , a2j2 , , . . . , amjm and an allelic frequency distribution

qt ∈ Θ denote

(6) qtg = qt1j1q
t
2j2
. . . qtmjm .

If dtg = qtg for all g, a population is said to be in linkage equilibrium.
When linkage equilibrium obtains, the inverse mapping ρ−1 : Θ →
∆(Γ) is well-defined by applying Equation (6). When we make use
of this inverse mapping, given x ∈ Θ we will write [ρ−1(x)]g to stand
for the g-th component of ρ−1(x) ∈ ∆(Γ).

The marginal fitness of allele aij at time t is defined as

(7) wtij :=
∑
g∈Caij

wtg
dtg∑

g′∈Caiji
dtg′
.
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From the collection {wtij}1≤j≤k+1 we furthermore can calculate the
mean payoff for locus i, which is wti :=

∑k+1
j=1 q

t
ijw

t
ij . But this yields

nothing new, because wti = wt of Equation (2) for all loci i.
The dynamic in this model is the haploid sexual replicator which can

be shown to be

(8) qt+1
ij = qtij

wtij
wt
,

and applies at every allele j of every locus i. This clearly follows the
schema of Equation (1) with wti here in the role of f t in Equation (1)
and wti as f

t
. As before, it will sometimes be convenient to express

Equation (8) generically as

(9) q+
ij = qij

wij
w
,

suppressing reference to t when its value is clear from context.
The haploid sexual replicator dynamic maps points in Θ to points

in Θ, and hence also maps points in ∆k
i to points in ∆k

i under the
projection from Θ to ∆k

i .

2.6.1. Haploid Reproduction as an Identical Interests Game. In the fixed
fitness case, the collection of fitness values {wg}g∈Γ can be regarded
as defining an identical interests game between the loci. Here we
essentially rewrite some of the previous sections in notation that is
more familiar from the game theory literature, and unite the analysis
of haploid dynamics with that of the dynamics of player strategies in
repeated identical interests games when the players implement the
haploid sexual replicator equation, Equation (8), in updating their
strategies.

From the fixed fitness haploid model with polytope Θ of alleles
at the various loci, define an identical interest game WΘ as follows.
Each locus i becomes a player i. The set of alleles of locus i becomes
the set of pure actions Ai of player i. For each profile of pure actions
(a1, . . . , am) ∈ A1×. . .×Am, the payoffwi(a1, . . . , am) = w(a1, . . . , am)
to each player i is identical and defined to be

w(a1, . . . , am) := wg,

where g = a1 . . . am is the genotype defined by ai ∈ Ai for each i and
wg is fitness payoff to genotyper g.

Here qi ∈ ∆k
i , which previously denoted the distribution of alleles

in locus i, is interpreted as a mixed strategy. The mean fitness w is in-
terpreted as w = w(q1, . . . , qm), the expected payoff (to each player in



MAKING THE MOST OF POTENTIAL: POTENTIAL GAMES AND GENOTYPIC CONVERGENCE10

the game) when each player/locus i plays mixed strategy qi. The ex-
pected payoff/mean fitness w plays the role of the potential function
in the identical interests game WΘ.

Every potential game (and hence every identical interests game)
admits at least one pure strategy Nash equilibrium, namely the pure
strategy profile yielding the highest potential payoff. The set of all
pure Nash equilibria is the set of local maxima of the potential. De-
note this set of pure Nash equilibria of WΘ by NWΘ

.
Each ν ∈ NWΘ

is by definition a profile of alleles (a1, . . . , am), one
from each locus. Hence it is naturally associated with a particular
genotype that we will denote gν ∈ Γ.

Note that if the set of mixed strategy profiles is restricted to a sub-
set Θ′ ⊂ Θ, a different identical interests game WΘ′ is induced. The
set of pure Nash equilibria of WΘ′ may differ from the set of pure
Nash equilibria of WΘ.

We may write qiaj as a synonym for qij when qi is the mixed strat-
egy of i. We can write w(p; q−i) for the expected payoff when locus
i plays mixed strategy p while all the other loci play mixed strategy
q−i. In a special case this notation becomes w(aj; q−i), standing for
the expected payoff when pure action/allele aj ∈ Ai is chosen at
locus i while all the other loci play mixed strategy q−i; this is none
other than the game interpretation of the marginal fitness of allele
aj ∈ Ai, which was above written as wij . Then for each i,

w(q1, . . . , qm) =
∑
a`∈Ai

qia`w(a`; q−i).

2.7. Diploid Sexual Reproduction Model.

2.7.1. One Locus. In the single locus diploid model, with a set of al-
leles A, one needs to keep track of pairs of alleles, aiaj ∈ A, which
constitute the genotypes. We suppose no position effects and hence
do not distinguish between aiaj and ajai. Random mating is also as-
sumed, hence Hardy–Weinberg ratios hold during the mating phase
(with selection then moving the adult population away from the
Hardy–Weinberg ratios).

Label the frequency of allele ai at time t by pti and the frequency
of genotype aiaj by P t

ij = P t
ji = ptip

t
j . Denote the fitness of genotype

aiaj by W t
ij = W t

ji, and the population mean fitness by

(10) W
t

=
∑
i,j

P t
ijW

t
ij =

∑
i

(ptip
t
iW

t
ii +

∑
j 6=i

ptip
t
jW

t
ij).
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Define the marginal fitness of allele ai as

(11) Wi =
∑
j

piWij = piWii +
∑
j 6=i

pjWij.

With all the preliminaries in place, the dynamic is once again de-
fined by a straight-forward replicator as the equation of motion

(12) p+
i = pi

Wi

W
,

for each allele.

2.7.2. Multiple Loci. The multi-locus diploid model is complicated to
describe; we omit most details and present only the minimal nota-
tion needed for our purposes here.

As before we suppose that there are m loci with k + 1 alleles per
locus. The state space is ∆k

1 × . . .×∆k
m and trajectories are elements

(p1, . . . , pm) ∈ ∆k
1 × . . .×∆k

m.
Within each locus i, as in the single locus model, the alleles are

between themselves playing at each time period a symmetric poten-
tial game with a fitness W t

ikil
assigned to each pairing aikail , where

aik , ail ∈ Ai. However, W t
ikil

is now a function not only of aikail but
of the entire profile p−i of the allelic distributions of the other loci.

The standard analysis in the literature tracks the distribution of
gametes (where each gamete is one possible haploid half of a diploid
genotype). Each gamete g can be assigned a marginal fitness Wg as a
function of the fitnesses of the pairings at each locus and the allelic
frequency, and from this the mean fitness W of the population is
calculated. Denoting the frequency of gamete g by rg, one can derive
a recursion formula that is reminiscent of but not identical to the
replicator equation

(13) r+
g = rg

Wg

W
−Dg

where Dg is the linkage disequilibrium for g. The existence of the
disequilibrium term Dg means that the diploid multi-locus dynamic
is not a replicator dynamic, making the analysis of this dynamic dif-
ferent from all the other models studied in this paper.
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3. MULTIPLICATIVE WEIGHTS, POTENTIAL GAMES, AND VIRTUAL
CONVERGENCE

3.1. Regret Minimisation. The objective of many of the on-line learn-
ing algorithms developed in the literature in recent years is the at-
tainment of regret minimisation. Let K ⊂ Rk be non-empty, bounded,
compact, and convex. At each iteration time t algorithm A selects an
element xt ∈ K, while a concave function `t : K→ R is revealed.

The goal of the algorithm is to minimise the average regret over
any n rounds, defined as

Rn(A) :=
n∑
t=1

`t(x
∗)−

n∑
t=1

`t(xt),

where x∗ ∈ arg maxx∈K
∑n

t=1 `t(x). In other words, the objective is
to have minimal regret relative to having selected the best possible
x∗ ∈ K from the start and playing x∗ in a fixed manner at every time
period.

An algorithm implements asymptotic regret minimisation if its re-
gret is sub-linear, i.e., Rn(A) = o(n) as n→∞. When this holds

(14) lim sup
n→∞

1

n

n∑
t=1

`t(x
∗)− 1

n

n∑
t=1

`t(xt) ≤ 0

where x∗ is the element of K with the optimal average payoff.2 In
other words, the average regret converges to zero in the limit and
the payoff of the algorithm approaches that of having selected the
optimal in hindsight x∗ from the start and monotonically selecting
only that point at every iteration.

3.2. Multiplicative Weights Update Algorithm. The multiplicative
weights update algorithm comes in two flavours: a polynomial and
exponential version. In the polynomial version, d ∈ ∆k is mapped
to d+ ∈ ∆k, conditional on receipt of a given tuple of real numbers
(`1, . . . , `k), by

(15) d+
i =

di(1 + η`i)∑
j dj(1 + η`j)

2 Strictly speaking we need to consider the lim sup in Equation (14) because the
limiting average payoff value might not be well defined.



MAKING THE MOST OF POTENTIAL: POTENTIAL GAMES AND GENOTYPIC CONVERGENCE13

for some η > 0. Dividing the numerator and denominator of Equa-
tion (15) by η changes nothing, hence Equation (15) can be equiva-
lently expressed as

(16) d+
i =

di(
1
η

+ `i)∑
j dj(

1
η

+ `j)
.

In the special case in which η →∞, sometimes called the parameter-
free version of the algorithm (cf. [Meir and Parkes, 2015]), Equation
(16) becomes

(17) d+
i =

di`i∑
j dj`j

= di
`i

`
,

which is exactly the replicator equation.
In its exponential version the multiplicative weights update algo-

rithm, also known as the Hedge algorithm ([Freund and Schapire, 1997])),
maps d ∈ ∆k to d+ ∈ ∆k, conditional on receipt of a given tuple of
real numbers (`1, . . . , `k), by

(18) d+
i =

di · eη`i∑
j dj · eη`j

for some η > 0.
The replicator equation can also be shown to be a special case

of the exponential algorithm ([Edhan et al., 2017]) as expressed in
Equation (1). The key is to register not the fitness payoffs at each
time period but the logarithms of the fitnesses: given a fitness tuple
f = (f1, . . . , fm), form the tuple (`1, . . . , `m) by setting `i = 1

η
ln(fi).

Then apply Equation (18):

d+
i =

di · eη`i∑
j dj · eη`j

=
di · eη( 1

η
ln(fi))∑

j dj · e
η( 1
η

ln(fj))
= di

fi

f
.

It is well known in the literature that the multiplicative weights
update algorithm attains regret minimisation. In the genetic con-
text studied here, this translates into attaining asymptotic average
growth rates equal to that of having selected the optimal-in-hindsight
genotype g∗ from the start and hypothetically running history again
with a population consisting solely of g∗ at every time period.

Furthermore, since the haploid sexual reproductive strategy can
be interpreted as an implementation of the replicator independently
in each locus, the interpretation of the replicator as an instantiation of
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the multiplicative weights updating algorithm is applicable in sev-
eral of the models in this paper, beyond the asexual model.

Several papers studying the applicability of multiplicative weights
updating algorithms to evolutionary models have been published in
recent years. A brief list of such papers includes [Livnat et al., 2008,
Chastain et al., 2013, Chastain et al., 2014, Meir and Parkes, 2015].

3.3. Multiplicative Weights and Baum–Eagon. It is instructive to
compare the multiplicative weights updating algorithm, especially
in its parameter-free version:

q+
i = qi

`i

`
,

and Baum–Eagon updating (as in Equation (24))

q+
ij := qij

∂U
∂qij∑
s qis

∂U
∂qis

.

From the perspective of each ∆i, the Baum–Eagon updating is
a special case of the multiplicative weights updating algorithm in
which the payoff `ij is given as the partial derivative of a potential
function U with respect to qij . This perspective will have a signifi-
cant role here, as many of the dynamics that will be studied benefit
both from the monotonic potential increase afforded by the Baum–
Eagon Theorem and the regret-minimisation given by the multiplica-
tive weights algorithm aspect.

3.4. Convergence in Potential Games. The content of the following
theorem is technically equivalent to a theorem in [Palaiopanos et al., 2017]
(see also [Panageas et al., 2019]), which is expressed and proved there
in the context of congestion games. We present it here with a full
proof for two reasons: a) an independent proof for potential games
is of value; b) the proof here can readily be understood in the con-
text of reproductive strategies, such as haploid sexual reproduction,
given the interpretation of such strategies as implementing the mul-
tiplicative weights updating algorithm, as described in Section 3.2,
in the context of a potential game between loci, with alleles in the
role of pure actions, as described in Section 2.6.1.

Theorem 1. Suppose that each of a finite set of players playing a potential
game implements the polynomial multiplicative weights update algorithm
at discrete time periods to update his mixed strategy, starting from a mixed
strategy of full support.
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Then the strategy profile of the players will converge to a fixed point that
is a Nash equilibrium.

Theorem 1 is a stronger result than may appear at first glance, be-
cause there is no explicit coordinating element between the players
that is assumed. To see why this may be surprising, consider the fol-
lowing extremely simple 2 × 2 game, which is an identical interests
game (and hence a potential game):

S B
S (2, 2) (0, 0)
B (0, 0) (1, 1)

One may interpret this as a coordination game between a couple,
who wish to meet. If they are both at the symphony hall (action
profile (S, S)) they each receive a payoff of 2; if they are both at the
beach (action profile (B,B)) they each receive a payoff of 1; other-
wise they fail to meet and receive zero payoff. Suppose that both
players simultaneously implement a simple-minded best reply strat-
egy, beginning at action profile (S,B). Then in the next time period,
the action profile will be (B, S), followed by (S,B) etc. Lacking a
coordinating element, no convergence to a fixed point is attained.

In contrast, Theorem 1 does guarantee convergence under the mul-
tiplicative weights update algorithm, even though there is no coordi-
nation between the players and each player updates his or her mixed
strategy from one time period to the next entirely independently of
the other players. It is as if coordination is attained ‘for free’. This
result is attained by virtue of the Baum–Eagon Theorem, which un-
derlies the proof of the theorem and guarantees that, despite the lack
of coordination, a monotonic climb up the potential of the game en-
sues at each time period.

3.5. Virtual Convergence. Let Θ := ∆k
1 × . . . × ∆k

m be a polytope,
with T : Θ→ Θ a transformation.

We will say that the dynamic defined by T converges polymorphi-
cally if for each initial point x ∈ Θ there is a point y ∈ Θ such
that limn→∞ T

n(x) = y. In the special case that for each x the limit
y = limn→∞ T

n(x) = (q1, . . . , qm) satisfies the condition that qi is a
point distribution in ∆k

i for each 1 ≤ i ≤ m, the dynamic converges
monomorphically.

Suppose now that a linear fitness function `t : Θ → R is revealed
for each time t. For an initial point x ∈ Θ, denote xn := T n(x),
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with T 0(x) = x. We will say that the dynamic defined by T virtually
converges polymorphically if for any sequence `1, `2, . . . of payoffs and
any initial point x ∈ Θ, there is a point y∗ ∈ Θ such that∣∣∣∣lim sup

n→∞

1

n

n∑
t=1

`t(y
∗)− 1

n

n∑
t=1

`t(xt)

∣∣∣∣ = 0.

In the special case that virtual convergence is to a y∗ that is a point
distribution in ∆k

i for each 1 ≤ i ≤ m, we say that virtual monomorphic
convergence obtains.

4. ASEXUAL (CLONAL) REPRODUCTION

The dynamics of frequency independent asexual reproduction with-
out mutation is perhaps the simplest of evolutionary dynamics – es-
sentially ‘bacteria in a petri dish’. Despite the apparent simplicity,
there is much to be said here that will also have implications for the
analysis presented in later sections.

4.1. Fixed Fitness. We suppose here a fixed fitness value wg for each
genotype at each time period, generically with a genotype g∗ ∈ Γ
whose fitness wg∗ is maximal amongst the genotypes. There are sev-
eral ways to analyse this; in the spirit of this paper, we may regard
this dynamic as a single-player potential game. In this interpreta-
tion, there is one player whose mixed strategy at time t is a probabil-
ity measure dt ∈ ∆(Γ) over the genotypes in Γ. The expected payoff
is
∑

g∈Γ d
t
gwg. Theorem 1 then implies convergence to a fixed point

in ∆(Γ).
Alternatively, we may directly apply the Baum–Eagon Theorem.

The dynamics are governed by the asexual replicator equation,

(19) d+
g = dg

wg
w
.

Since w =
∑

g∈Γ dgwg, it follows that ∂w
∂dg

= wg, hence Equation (19)
is an application of the Baum–Eagon transformation as expressed in
Equation (24).

Denote by T0 : ∆(Γ)→ ∆(Γ) the transformation that defines d+ =
T0(d) by mapping dg to d+

g for each g according to Equation (19).
Since the population mean fitness is increasing montonically, limn→∞ T

n
0 (d)

for any starting distribution d ∈ ∆(Γ) converges to a point in ∆1(Γ),
i.e., a fixed point that is a point distribution, since the only fixed
points of Equation (19) are point distributions. All the weight is
asymptotically on 1g∗ , where g∗ is the genotype of maximal fitness.
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This implies that the interior of the simplex ∆(Γ) forms a global ex-
ponentially stable basin of attraction. If, in contrast, the initial point
lies within a strict subface F ⊂ ∆(Γ), then the convergence will again
be to a monomorphic population whose genotype is the genotype of
maximal fitness within F . This will clearly be sub-optimal if g∗ /∈ F .

4.2. Temporally Varying Fitness. The fixed fitness setting of asex-
ual reproduction is the simplest evolutionary model, yielding per-
haps the strongest result that can be expected, of monotonic and
rapid fitness increase towards convergent fixation to the globally op-
timal genotype. This satisfactory result, however, may not necessar-
ily obtain if fitnesses are no longer fixed in time.

In a temporally varying fitness model, we suppose that there is a
collection of possible environments Ω, such that each ω ∈ Ω deter-
mines a fitness landscape such that each genotype g is assigned a
fitness value wg(ω) under ω. At each time t one environment ω from
Ω is selected, with the payoff to the genotypes registered in accor-
dance to the fitness landscape of that environment.

A simple hill climbing dynamic cannot be applicable here because
there is a different ‘hill’ (i.e., fitness gradient derived from the envi-
ronment) at each time period; the trajectory under the transforma-
tion T0 will no longer be monotonically increasing in mean fitness.
Despite this, the replicator algorithm does an excellent job at learn-
ing, even under conditions of temporally varying fitness. This can
be seen in several ways.

Consider first a discrete i.i.d. model in which there is a probabil-
ity measure µ over Ω determining the selection of the environment
at each time period, repeated indefinitely. This determines for each
genotype g an expected fitness payoff under µ. An optimal pop-
ulation will (generically) be composed of the genotype with maxi-
mal expected fitness payoff, and the replicator reliably identifies this
genotype. More generally:

Proposition 1. Let (Ω,B, µ) be a probability space over a collection Ω of
environments. For each genotype g ∈ Γ, define a random variable wg(ω) ∈
[0, 1], interpreted as the fitness of g under environment ω ∈ Ω, from which
the expected fitness is given as E(wg | µ) =

∫
Ω
wg(ω) dµ(ω). Let S : Ω→

Ω be a stationary and ergodic transformation defining a stochastic process
for each g by wtg(ω) = wg(S

t(ω)).
Then under the asexual replicator dynamic, with probability one the pop-

ulation asymptotically converges to a monomorphic population consisting
of the genotype with maximal expected fitness.



MAKING THE MOST OF POTENTIAL: POTENTIAL GAMES AND GENOTYPIC CONVERGENCE18

Proposition 1 indicates that when there is sufficient structure to the
stochastic process of the varying environments, at least as expressed
in stationary ergodicity (which include i.i.d. as a special case), the
replicator dynamic will be able to extract the information inherent
in the process to identify the optimal genotype and converge to that
genotype, from any initial population state (that at least minimally
includes the optimal genotype).

From here one can ask what happens when the stochastic process
of varying environments can be any process at all. It is not difficult
to conjure examples of temporally varying environments that do not
admit convergence to a single genotype. For example, let

wtg =

{
e

1
2 for t ≤ 100 mod 200

e
1
3 for t > 100 mod 200

wth =

{
e

1
3 for t ≤ 100 mod 200

e
1
2 for t > 100 mod 200

Then clearly both lim inf 1
T

∑T
t=1 lnwtg < lim sup 1

T

∑T
t=1 lnwth and lim inf 1

T

∑T
t=1 lnwth <

lim sup 1
T

∑T
t=1 lnwtg. When one genotype is strong the other is weak,

each temporarily overtaking the other only to fall back later.
Nevertheless, it is possible to extend Proposition 1 to much more

general environments using the notion of one-step-ahead expected log-
fitness. The one-step ahead expected log-fitness is the expected log-
fitness of a generation conditional on the past generations.

Definition 2. Let (Ω,B, µ) be a probability space over a collection Ω of en-
vironments and let (ψt)t≥1 be a stochastic process of environments relative
to (Ω,B, µ). For each genotype g ∈ Γ, define a process bywψtg = wg(ψt), in-
terpreted as the fitness of g under environmental process ψt. Let ρgt = lnwψtg
denote the log-fitness; assume that ρgt is always bounded.

We will call ρ̂gt = 1
t

∑t
s=1E[ρgs+1|ρgs, ..., ρ

g
1] the average one-step-ahead

expected log-fitness of g at t.

Definition 3. A gentoype g is asymptotically one-step-ahead superior
on average if lim inft→∞ ρ̂

g
t > lim supt→∞ ρ̂

h
t with probability one for all

genotypes h ∈ Γ with h 6= g.

Theorem 2. If a genotype g ∈ Γ is asymptotically one-step-ahead superior
on average then, under the asexual replicator dynamic, with probability
one the population asymptotically converges to a monomorphic population
consisting of the genotype g.
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It is worthwhile noting here that in the case of an ergodic environ-
ment, lim inf

t→∞
ρ̂gt and lim sup

t→∞
ρ̂gt are one and the same and equal to the

constant E[lnwg] almost surely. Thus the sufficient condition estab-
lished in Theorem 2, namely asymptotic one-step-ahead superiority,
is reduced to E[lnwg] > E[lnwh].

The statement of Theorem 2 supposes that genotype g is asymp-
totically one-step-ahead superior on average with probability one
with respect to all environments. Suppose instead that a genotype
g is is asymptotically one-step-ahead superior on average only with
respect to a subset A∞g of the collection of environments. Then we
obtain the following corollary.

Corollary 4. If Pr(A∞g ) > 0, where A∞g is the set of environments in
which genotype g is is asymptotically one-step-ahead superior on average,
then under the asexual replicator dynamic, with probability one in A∞g the
population asymptotically converges to a monomorphic population consist-
ing of the genotype g.

Algorithms such as the multiplicative weights and mirror ascent
algorithms have been developed in the computer science literature
in recent years for the sake of optimisation under conditions of no
statistical structure. The replicator dynamic, it turns out, exploits
the results afforded by these algorithms.

Theorem 3. Under the replicator dynamic, for any arbitrary temporally
varying fitness there is an optimal-in-hindsight genotype g∗ such that for
any initial point in the interior of the simplex, asexual reproduction virtu-
ally converges monmorphically to g∗.

In summary, we interpret the results of this section from a learning
perspective: the objective is to learn which genotype is best fit for the
environment process, via the algorithmic tool of the replicator.

When the environment is fixed, the replicator homes in on the ob-
jectively fittest genotype. When the environment process is suffi-
ciently structured, as in a stationary ergodic process, the replicator
makes use of time averaging to identify a winning genotype. Fail-
ing that, in the worst case in which there is insufficient structure
for predictive learning, the replicator still manages to extract infor-
mation, by application of regret minimisation via the multiplicative
weights updating algorithm; virtual convergence occurs in the sense
that one can imagine a population which from the start consisted of
only the optimal-in-hindsight genotype and attaining the same as-
ymptotic average growth rate as actually attained.
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5. HAPLOID SEXUAL REPRODUCTION

5.1. Fixed Fitness. In this section the population will be presumed
to reproduce via haploid sexual reproduction under a fitness land-
scape {wg}g∈Γ that is fixed throughout time.

5.1.1. Under Linkage Equilibrium. Under linkage equilibrium, in pop-
ulation Ωt

g the equation dtg = qt1j1q
t
2j2
. . . qtmjm holds for each genotype

g = a1j1 , a2j2 , , . . . , amjm . As Ωt
g matures into Πt+1

g , selection applies
such that linkage equilibrium does not hold for Πt+1

g ; however, by
assumption random mating between the reproducing adults in Πt+1

g

immediately restores linkage equilibrium in the next offspring gen-
eration Ωt+1

g .
One advantage of working with an assumption of linkage equi-

librium is that we may identify in a bijective manner a point in the
allelic frequency space Θ and a corresponding point in the genotypic
frequency space ∆(Γ). We shall freely do so in this section as follows.

Recalling the haploid sexual replicator,

(20) q+
iji

= qiji
wiji
w
,

define τ : Θ → Θ to be the transformation given by the mapping
of qij to q+

ij for each locus i and allele j in i. Exploiting the linkage
equilibrium assumption, define a transformation T1 : ∆(Γ) → ∆(Γ)
by

(21) T1(d) = ρ−1 ◦ τ ◦ ρ(d).

Abusing terminology, we will call both τ and T1 haploid sexual
replicator transformations. This enables us to analyse the dynamics
equally well under either T1 or τ ; both define discrete dynamical
systems determining trajectory paths in ∆(Γ) or in Θ, respectively.

As in the asexual case, the Baum–Eagon inequality applies (see a
similar argument in [Novak and Barton, 2017]). The domain is the
polytope Θ as defined in Equation (5).

Lemma 5. The haploid sexual replicator transformation with linkage equi-
librium satisfies the Baum–Eagon inequality, with mean fitness w as a Lya-
punov function.

It follows that the population will asymptotically converge to a
fixed point of the dynamics defined by the transformation T1 along
paths of monotonically increasing mean fitness.
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From here it will be convenient to continue the analysis from the
equivalent perspective of the identical interests game interpretation.

Theorem 4. Under haploid recombinative sexual reproduction with link-
age equilibrium, trajectories always increase mean fitness monotonically.

Beginning from almost any interior point of ∆(Γ) the haploid sexual
replicator dynamic converges asymptotically to a monomorphic population
in which each individual bears a genotype gν from the setNWΘ

of pure Nash
equilibria of the associated potential game WΘ.

Corollary 6. If the initial point of the allelic frequency of the population
lies in any face Θ′ of Θ then the dynamic converges asymptotically to a
monomorphic population consisting of genotypes from the set of pure Nash
equilibria of the associated potential game W ′

Θ.

There are immediate interesting implications of Theorem 4. One
of these is that ∆(Γ) is entirely partitioned into asymptotically stable
basins of attraction (deterministically in this model).

Theorem 5. For each pure Nash equilibrium ν ∈ NWΘ
, there exists Bν ⊂

∆(Γ) containing 1gν ∈ ∆1(Γ) such that starting from any initial point
in Bν the population under the dynamic will converge to a monomorphic
population consisting solely of genotype gν , i.e., T n1 (x) −→ 1gν for every
x ∈ Bν . Apart from separatrices between these basins of attraction, which
are of negligible measure, the sets in the collection {Bν} form a partition of
∆(Γ).

Even more than that can be said here. By Theorem 6 of [Baum and Sell, 1968],
any transformation of the form defined in Equation (24) increases U -
homotopically, from which it follows that the haploid sexual replica-
tor transformation T1 : ∆(Γ)→ ∆(Γ) increases w-homotopically.

Proposition 7. Let St(x) = tT1(x) + (1 − t)x. For each pure Nash equi-
librium ν ∈ NWΘ

, there exists a neighbourhood Hν ⊂ ∆(Γ) of 1gν such
that St(Hν) ⊂ Hν for 0 < t ≤ 1, and for every x ∈ Hν , T n1 (x) −→ 1gν .
Furthermore, each Hν has the homotopy type of a disk.

The significance of the ‘basin of homotopic attraction’Hν of Propo-
sition 7 is that not only does every point x ∈ Hν converge to gν under
the dynamic, also a small perturbation of around x perserves this
property. In contrast, around any pure strategy point that is neither
a local maximum or a local minimum there are points such that a
small perturbation can lead to asymptotic convergence to different
fixed points.

Finally:



MAKING THE MOST OF POTENTIAL: POTENTIAL GAMES AND GENOTYPIC CONVERGENCE22

Figure 2. An illustration of the convergence to a monomor-
phic populations consisting of one genotype under haploid
sexual reproduction. In both simulations, the frequency
of the final genome in the population over generations is
tracked. This frequency appears to drift most of time, then
converges at an exponential rate to fixation towards the end,
in accordance with Proposition 8.

Proposition 8. For each pure Nash equilibrium ν ∈ NWΘ
, there exists a

neighbourhood Eν ⊂ ∆(Γ) of 1gν that is an exponentially stable basin of
attraction.

Within the exponentially stable basin of attraction around a Nash
equilibrium, the haploid sexual replicator dynamics resembles the
asexual replicator dynamics, with exponential convergence to an equi-
lbrium point.

The containment relations are 1gν ∈ Eν ⊆ Hν ⊆ Bν . This implies
that an observer following a trajectory starting in Bν far from gν will
likely initially see a slow and moderate increase in mean fitness, with
broad polymorphism, for a long time, but once the trajectory enters
Eν suddenly an extremely fast rise in mean fitness will be registered
along with rapid convergence to a monomorphic population.

5.1.2. Under Linkage Disequilibrium. We initially present an analysis
of the haploid sexual replicator under linkage between loci in the
case of two loci, for clarity of exposition.

Let r ∈ [0, 1] be the recombination rate. Suppose one starts with
a point d ∈ ∆(Γ) representing the population distribution. Project
d to Θ via θ = ρ(d). Under the asexual replicator d is mapped to
T0(d), and under the haploid replicator θ is mapped to τ(θ). Then
the replicator equation under recombination rate r is

d+ = r[ρ−1(τ(θ))] + (1− r)α(d)
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or, using the transformation T1 defined in Equation (21),

(22) d+ = rT1(d) + (1− r)T0(d).

We may denote by Tr the transformation defined by Equation (22)
which is consistent with our labelling of T1 and T0. When r 6= 1, link-
age equilibrium does not hold, neither in the adult population (due
to selection) nor in the offspring population (due to genetic linkage
between the loci).

The recombination rate r is intended to describe a situation in
which each offspring is produced by sexual recombination with prob-
ability r and is produced by asexual cloning with probability 1 − r.
This results in an offspring population, such that within that pop-
ulation, a weight r of the offspring is descended from a sexual re-
production event and weight 1 − r is descended from an asexual
reproduction event.

We may instead consider the following situation, which is math-
ematically equivalent and more convenient for our purposes: Cre-
ate two separate copies Π0 and Π1 of the reproducing population Π,
maintaining the genotype frequencies of the original population in
each copy, with relative population size proportions |Π1|

|Π0| = r
1−r . Let

Π0 reproduce asexually to produce offspring population Ω0 and Π1

reproduce haploid sexually to produce offspring population Ω1, fi-
nally combining them into Ω = Ω0 ∪Ω1 and regarding the genotypic
frequency of Ω.

Slightly more generally, select fraction r of the population at ran-
dom to reproduce by the haploid sexual transformation, with the
remaining 1− r of the population reproducing by the asexual trans-
formation. All of these alternatives result in an offspring popula-
tion with weight r descending from a sexual reproduction event and
weight 1− r descending from an asexual reproduction event, which
is what is relevant.

Proposition 9. Under two-locus haploid recombinative sexual reproduc-
tion with recombination rate r, trajectories always increase mean fitness
monotonically.

Beginning from any interior point of ∆(Γ) the haploid sexual replicator
dynamic converges asymptotically to a monomorphic population in which
each individual bears a genotype gν from the set NWΘ

of pure Nash equilib-
ria of the associated potential game WΘ.

In greater generality, suppose that there are m loci. Let λ be a par-
tition of {1, . . . ,m} into ` ≤ m partition elements. An individual will



MAKING THE MOST OF POTENTIAL: POTENTIAL GAMES AND GENOTYPIC CONVERGENCE24

be of λ-type if, when reproducing, the genes of that individual un-
dergo physical genetic linkage according to λ. In other words, if two
λ-type individuals I1 and I2 mate and produce an offspring O, then
for each partition element λ of λ, all the alleles in the loci included
in λ in the genotype of O will be identical to either the alleles of λ in
the genotype of I1 or the alleles of λ in the genotype of I2, with equal
probability. If the entire population reproduces in this way, denote
the resulting transformation from ∆(Γ) to ∆(Γ) by Tλ.

If λ is the coarsest partition, consisting of only one partition ele-
ment, this describes asexual reproduction. For any other partition,
λ-type reproduction with 1 < ` ≤ m partition elements reduces to
haploid sexual reproduction: simply regard the ` partition elements
as ` indpendent loci. If λ is the finest partition, in which each locus is
its own partition element, this describes linkage equilibrium haploid
reproduction.

Let Λ be the set of all partitions of {1, . . . ,m}. For each λ ∈ Λ let
rλ ∈ [0, 1], such that

∑
λ∈Λ rλ = 1. Interpret rλ as the probability that

an offspring is produced by physical genetic linkage in accordance
with partition λ. Mathematically this is equivalent to selecting at
random at each generation, for each λ ∈ Λ, a fraction rλ of the popu-
lation which reproduces by λ-type reproduction.

The resulting {rλ}λ∈Λ-tuple replicator equation is

(23) d+ =
∑
λ∈Λ

rλTλ(d).

Theorem 6. Under m-locus haploid recombinative sexual reproduction
with recombination tuple {rλ}λ∈Λ, trajectories always increase mean fit-
ness monotonically.

Beginning from any interior point of ∆(Γ) the haploid sexual replicator
dynamic converges asymptotically to a monomorphic population in which
each individual bears a genotype gν from the set NWΘ

of pure Nash equilib-
ria of the associated potential game WΘ.

The conclusion is that whether or not linkage equilbrium holds, in
haploid sexual reproduction mean fitness increases monotonically
and the population always converges to a monomorphic population
corresponding to a pure Nash equilibrium of the potential game (this
statement also holds true for asexual reproduction, since the equilib-
rium of maximal mean fitness is itself a pure Nash equilibrium of the
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potential game). Results similar to those in Theorem 5 and Propo-
sition 7 also attain whether or not linkage equilibrium holds, with
sensitivity to intial conditions as before.

However, although under any linkage structure convergence to
some pure Nash equilibrium occurs, the probability of converging
to any particular pure Nash equilibrium, starting from the same ini-
tial allelic distribution, differs from one linkage structure to another.
The same initial point can converge to different equilibria points de-
pending on the linkage structure (as can be seen for example in the
extreme case of no recombination, under which convergence will al-
ways be to the asexual globally optimal fitness equilibrium.)

5.1.3. External and Internal Environments. Let E be a collection of pos-
sible environments. Each e ∈ E determines a fitness landscape in the
sense that e is identified with an identical interests game We played
by the loci, relative to a fixed allelic frequency space Θ.

In this section we will make a distinction between what we term
the ‘external environment’ and the ‘internal environment’. The ex-
ternal environment is the realisation e1, e2, . . . , et, . . . and the corre-
sponding We1 ,We2 , . . . ,Wet , . . .. Parallel to this, we may take the per-
spective of any particular locus i. From this perspective, the alleles
in locus i are amongst themselves implementing an asexual replica-
tor dynamic as follows. Let (qt1, . . . , q

t
m) denote the profile of allelic

frequencies over time. At time t, the identical interests game is Wet ,
and we may write the time t growth rate as the stage t game payoff
wet(q1, . . . , qm). Let qt−i = (qt1, . . . , q

t
i−1, q

t
i+1, . . . , q

t
m) denote the profile

of the m − 1 loci apart from i. Call the sequence (q1
−i, q

2
−i, . . .) the

internal environment from the perspective of locus i.
Define the total environment from the perspective of locus i at time

t to be wet(·; qt−i), meaning that each choice of qi ∈ ∆(Ai) yields the
payoff wet(qi; q−i). In this way we may reduce the dynamic of each
locus to the asexual replicator, with the alleles in locus i implement-
ing the asexual dynamic with respect to the total environment from
their perspective.

5.1.4. Virtual Convergence. Table 1 presents examples of two fitness
matrices with two loci and three alleles per locus. One may interpret
these as representing a population that is exposed to two possible
environments, one per matrix, where the top is is interpreted as a
‘rainy year’ environment and the bottom one is a ‘drought year’ en-
vironment.
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a21 a22 a23

a11 wa11,a21 = .40 wa11,a22 = .60 wa11,a23 = .80
a12 wa12,a21 = .48 wa12,a22 = .55 wa12,a23 = .75
a13 wa13,a21 = .20 wa13,a22 = .51 wa13,a23 = .70

a21 a22 a23

a11 wa11,a21 = .40 wa11,a22 = .48 wa11,a23 = .20
a12 wa12,a21 = .60 wa12,a22 = .55 wa12,a23 = .51
a13 wa13,a21 = .80 wa13,a22 = .75 wa13,a23 = .70

Table 1. Two examples of fitness matrices for haploid repro-
duction with two loci and three alleles per locus

The top matrix has one pure Nash equilibrium, at (a11, a23), and
the bottom matrix similarly one at (a13, a21). It is possible, however,
for an environment realisation to create a trajectory that almost al-
ways remains extremely close to points that are not Nash equilibria
– even though from the perspective of both matrices there is a re-
pulsion from those points. For example, there can be a trajectory
that begins close to (a13, a21) and remains there under an alternating
realisation, rainy one year and drought the next. This is because al-
though at each time period the single period dynamic pushes away
from (a13, a21), the directions of push away from that point are nearly
opposite, hence the trajectory never wanders far.

Alternatively, it is possible to imagine environment realisations in
which very long stretches of one environment bring the population
very nearly to convergence to (a11, a23), followed by equally long
stretches subsequently driving the population very nearly to con-
vergence to (a13, a21), repeated periodically in such a way that there
is no candidate even for ‘near convergence’. These simple examples
indicate that the behaviour under time varying fitness can be com-
plex and highly dependent on initial conditions and random reali-
sations. Nevertheless, we can state the following theorem on virtual
convergence. The intuition behind it is that even when the external
and internal environments change upredictably, from the perspec-
tive of each individual locus the internal alleles are implementing
the simple replicator equation, hence each locus experiences virtual
convergence.
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Theorem 7. The hapoid sexually reproducing dynamic virtually converges
monomorphically under any environment realisation.

Note that although the result of Theorem 7 guarantees virtual monomor-
phic convergence under every environment realisation, different re-
alisations can lead to different virtual growth rates. If the external
environment process is sufficiently regular, however, then every re-
alisation will lead to the same virtual convergence, even though the
corresponding internal environment process may not follow parallel
regularity.

Proposition 10. If the external environment follows a stationary and er-
godic stochastic process then every environment realisation leads to the
same virtual monomorphic growth rate.

6. DIPLOID SEXUAL REPRODUCTION

6.1. Single Locus Model.

6.1.1. Fixed Fitness. The diploid sexual reproduction in the single
locus model is extremely similar to the haploid two locus model,
which enables many of the results from haploid sexual reproduction
to be carried over almost entirely (and arguably relatively simply,
since the parallel is to two loci and not m loci) but for one very sig-
nificant difference: where in the haploid two locus model fitness is
represented by a potential matrix with a separate set of alleles for the
row player and the column player (corresponding to different alle-
les in the different loci), in the single locus diploid model the same
alleles appear as both row players and column players in the matrix.

The state space is the allelic frequency space Θ = ∆(A), with the
trajectories in ∆(A) recursively following the replicator equation.
The fitness landscape3 determined by fitness Wij corresponding to
gamete aiaj , denoted here as before by WΘ is a symmetric matrix.

Dynamics with respect to symmetric matrices have long been stud-
ied in the literature of evolutionary game theory. The parallels are
clear: both the diploid single locus and the population dynamic cases
can be thought of as a single player game, in which the player selects
a mixed strategy (e.g., the ratio of hawks to doves in the population,
or the ratio of allele A to allele B), receives an expected payoff, and in
the next time period updates the mixed strategy in accordance with
a replicator equation. In the evolutionary game theory literature, it

3 We assume here that there are no position effects.
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is well known that such a dynamic leads to convergence to evolu-
tionarily stable Nash equilibria, which may be either pure or mixed
Nash equilibria.

In comparison with the haploid sexual model, the significant new
element is, of course, the possibility of convergence to mixed Nash
equilibria. One possible evolutionary advantage of maintaining mixed
equilibria versus convergence to pure equilibria is that mixed equi-
libria may be similar to constantly re-balanced portfolios in invest-
ment theory; it is well known that re-balanced portfolios (analogous
to mixed equilibria) can significantly outperform single stock port-
folios (analogous to pure equilibria).

There is one major difference between the dynamics of the diploid
sexual reproduction and the population dynamics of a typical evo-
lutionary game theory model. In the fixed fitness/matrix setting,
evolutionary game theory models can frequently exhibit cyclic or
chaotic trajectories that never converge. In contrast, diploid single
locus dynamic trajectories are generically monotonically increase in
mean fitness and converge, to either a stable monomorphic popu-
lation (pure Nash equilibrium) or a stable polymorphic population
(mixed Nash equilibrium).

This is because the diploid single locus dynamic follows the Baum–
Eagon inequality, montonically increasing in mean fitness. Theorem
1 is not directly applicable here, because of the non-linearity in the
payoffs to the players with respect to the payoff matrix. One can
instead show directly from the equations of motion that the Baum–
Eagon inequality holds. This result is known in the literature (see for
example [Edwards, 2000]); we reproduce it here for completeness.

Recall that by Equation (11), Wi =
∑

j piWij and that by Equation
(10), W =

∑
i(p

2
iWii +

∑
j 6=i pipjWij). Calculating the partial deriva-

tive, ∂W
∂pi

= 2piWii +
∑

j 6=i 2pjWij = 2(piWii +
∑

j 6=i pjWij) (taking into
account the fact that i will appear both in Wij and Wji for each j).

It follows that
∑

j pi
∂Wi

∂pi
= 2(

∑
i(p

2
iWii +

∑
j 6=i p

t
ip
t
jWij)) = 2W .

Hence

pi

∂W
∂pi∑
j pj

∂W
∂pj

= pi
2(piWii +

∑
j 6=i pjWij)

2W

= pi
2Wi

2W
= pi

Wi

W
= p+

i ,



MAKING THE MOST OF POTENTIAL: POTENTIAL GAMES AND GENOTYPIC CONVERGENCE29

with the last equality following Equation (12). Hence the Baum–
Eagon Theorem applies to the dynamic in ∆(A) and one concludes
that in the single locus diploid sexual reproduction dynamic fitness
monotonically increases until a local maximum is attained.

The upshot is that, apart from the possible convergence to stable
polymorphism when mixed strategies are the end result of the dy-
namic, the diploid single locus model parallels the haploid two-locus
model in the crucial aspects of monotonic Baum–Eagon mean fitness
increase while following a replicator recursion. This enables us to
adapt many of the results from the haploid analysis to the diploid
model.

Theorem 8. In the diploid single-locus model, for each ESS equilibrium
ν, there exists Bν ⊂ ∆(Γ) containing 1gν such that starting from any
initial point in Bν the population under the dynamic will converge to a
monomorphic population consisting solely of genotype gν , i.e., T n1 (x) −→
1gν for every x ∈ Bν . Apart from separatrices between these basins of
attraction, which are of negligible measure, the sets in the collection {Bν}
form a partition of ∆(Γ).

Proposition 11. Let St(x) = tT1(x)+(1− t)x. In the diploid single-locus
model, for each ESS equilibrium ν, there exists a neighbourhood Hν ⊂
∆(Γ) of 1gν such that St(Hν) ⊂ Hν for 0 < t ≤ 1, and for every x ∈ Hν ,
T n1 (x) −→ gν . Furthermore, each Hν has the homotopy type of a disk.

6.1.2. Temporally Variable Fitness. The time varying fitness results of
the haploid two-locus model similarly carry over to the diploid single-
locus model.

Theorem 9. The single-locus diploid sexually reproducing dynamic under
varying fitness environments virtually converges polymorphically under
any environment realisation.

6.2. Multiple Locus Model. The diploid multi-locus model under
linkage equilibrium re-capitulates the diploid single locus model at
every locus. Hence the results of the previous section apply without
changes.

Many of the tools of the previous sections fail to apply in the
diploid multi-locus model under linkage disequilibrium. The main
equation of motion, Equation (13), is similar to but not quite a repli-
cator equation. More to the point, the presence of the disequilibrium
term causes the dynamic to fail to conform to the Baum–Eagon con-
ditions. Hence the Baum–Eagon theorem, even under fixed fitness,
cannot be used to conclude that monotonic fitness increase occurs;
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indeed, it has long been known that there are examples of fitness
landscapes in which diploid populations can exhibit reductions in
mean fitness over stretches of time and even periodically cycling tra-
jectories. This leaves no possibility for a general theorem on either
monomorphic or polymorphic convergence.

However, virtual convergence (possibly polymorphic), which does
not depend on monotonic fitness increase, does obtain here under
both fixed and temporally varying fitness. The proof is essentially
the same as the proof of haploid virtual convergence (Theorem 7) un-
der temporally varying fitness. As before, we suppose a choice of en-
vironment realisation e1, e2, . . . from a set of possible environments,
and distinguish between the external environment, represented by
such a realisation, and the internal environment perceived by a lo-
cus i, which is the allelic frequencies of the other loci at any time
t.

Theorem 10. The multi-locus diploid sexually reproducing dynamic vir-
tually converges polymorphically under any environment realisation.

APPENDIX A. BAUM–EAGON DYNAMICS

We make use extensive use here of the Baum–Eagon inequality
(originally developed for the study of hidden Markov models by use
of the Baum–Welch algorithm). The concepts and results in this sec-
tion are from [Baum and Eagon, 1967] and [Baum and Sell, 1968]. A
brief exposition on the Baum–Eagon inequality with applications to
population genetics appears in [Edwards, 2000].

Baum–Eagon Inequality. Let Θ be a polytope given by a cross
product of simplices,4 i.e., Θ := ∆k

1 × . . . × ∆k
m. Denote the j-th

element in the i-th simplex by xij .
Let U(xij) be a real-valued polynomial function with non-negative

coefficients over the variables {xij}i,j . Let x be a point in the domain
Θ. Let T (x) denote the point of Θ whose i, j-th coordinate is given
by

(24) T (x)ij := xij

∂U
∂xij

∣∣∣
x∑

s xis
∂U
∂xis

∣∣∣
x

,

4 As before, in greater generality it is possible to allow each simplex to be of dif-
ferent dimension and attain the same results. For simplicity of exposition, we re-
strict here to the special case in which all the simplices are of the same dimension.
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where the denominator is a normalising element.
Then U(T (x)) > U(x) unless T (x) = x.
It is possible to give the Baum–Eagon inequality an interesting gra-

dient interpretation. Fix i, i.e., concentrate on the i-th simplex, with
each element of ∆k

i denoted as a tuple xi := (xi1, xi2, . . . , xik). From
the perspective of ∆k

i , U may be considered to be a ‘potential’ func-
tion, involving (xi1, xi2, . . . , xik) and other parameters.

Consider a Euclidean gradient vector derived from the potential
in this perspective, that is, ∇U(xi) = ( ∂U

∂xi1
, ∂U
∂xi2

, . . . , ∂U
∂xi1

). Then the
transformation of Equation (24) can be considered as mapping xi to
∆U(xi)·xi for each i separately, followed by projection to the simplex
by way of the normalisation. In a sense, the Baum–Eagon dynamic
is an application of a form of ‘gradient hill climbing’, locally within
each simplex of the polytope Θ, that taken together ensures a global
climb.

APPENDIX B. PROOFS

Proof of Proposition 1. This is a straight-forward application of
Birkhoff’s ergodic theorem. Again we register the log fitness. By the
ergodic theorem, for each g, limt→∞

1
t

ln(wtg(ω)) = E(lnwg | µ) with
probability one. Hence the genotype g∗ with the greatest expected
log fitness (which is also the one with the greatest expected fitness)
dominates, as it grows at the fastest average rate.

Proof of Theorem 2. Consider the field F g
t = σ(ρg1, ..., ρ

g
t ) and the

random variable

Zg
t :=

t∑
s=1

ρgs −
t∑

s=1

E[ρgs+1|F
g
t ].(25)

This is a martingale since

E[Zg
t+1 − Z

g
t |F

g
t ] = E

[
ρgt+1|F

g
t

]
− E

[
ρgt+1|F

g
t

]
= 0,(26)

and it is bounded by assumption. Thus, by the Azuma-Hoeffding
inequality:

Pr(|t−1Zg
t | ≥ ct−1/4) ≤ exp

(
−c

2t3/2

c2t

)
= exp(−

√
t).(27)

Let Et be the event that |t−1Zg
t | ≥ ct−1/4. Then we have shown that

∞∑
t=1

Pr(Et) ≤
∞∑
t=1

exp(−
√
t) <∞.(28)
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Using the Borel-Cantelli Lemma we deduce

Pr

(⋂
s≥1

⋃
t≥s

Et

)
= 0.(29)

Notice that ⋂
s≥1

⋃
t≥s

Et = {
∣∣t−1Zg

t

∣∣ ≥ ct−1/4 ∀t ≥ 1},(30)

implying that almost surely 1
t
Zg
t → 0 as t → ∞. By the definition of

Zg
t we deduce that almost surely

lim
t→∞

(
1

t

t∑
s=1

ρgs −
1

t

t∑
s=1

E[ρgs+1|F g
s ]

)
= 0.(31)

Thus, by adding lim sup
t→∞

1
t

t∑
s=1

E[ρgs+1|F g
s ] = lim sup

t→∞
ρ̂gt to both sides

of the equals sign in Equation (31), we obtain that almost surely

lim sup
t→∞

1

t

t∑
s=1

ρgs ≤ lim sup
t→∞

ρ̂gt ,(32)

and by an entirely similar argument

lim inf
t→∞

1

t

t∑
s=1

ρgs ≥ lim inf
t→∞

ρ̂gt .(33)

Next, recall that by assumption g is asymptotically one-step-ahead
superior on average, meaning that by definition lim inf ρ̂gt > lim sup ρ̂ht
for all genotypes h 6= g. Combining this with the inequalities in (32)
and (33), which holds for every genotype, one obtains that for every
genotype h

lim inf
t→∞

1

t

t∑
s=1

ρgs > lim sup
t→∞

1

t

t∑
s=1

ρhs .(34)

This is sufficient to deduce the statement of the theorem.
Proof of Corollary 4. As Pr(A∞g ) > 0 by assumption, we can con-

sider the process ψgt which is the restriction of ψt toA∞g . The corollary
then follows by applying Theorem 2 to the process ψgt .

Proof of Theorem 3. As shown in [Edhan et al., 2017], the replica-
tor is an instantiation of Hedge, the exponential version of the mul-
tiplicative weights update algorithm. It follows that the replicator
attain asymptotic zero regret.
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Translating this mathematical result back to the evolutionary set-
ting, this is equivalent to stating that asexual reproduction virtually
converges monomorphically to an optimal-in-hindsight genotype g∗.

Proof of Lemma 5. Focus on a particular allele aiji and its atten-
dant qiji . Recall that by Equation (2), w =

∑
g∈Γ dgwg, that by Equa-

tion (7), wiji =
∑

g∈Caiji
wgdg,iji , while by Equation (20) the haploid

sexual replicator is q+
iji

= qiji
wiji
w

.

For g /∈ Caiji , one has ∂(dgwg)

∂qiji
= 0. For g ∈ Caiji , using dg =

q1j1q2j2 . . . qmjm (by linkage equilibrium) yields

qiji
∂(dgwg)

∂qiji
= q1j1q2j2 . . . qmjmwg = dgwg.

Hence ∂w
∂qiji

=
∑

g∈Caiji
wgdg,iji = wiji . It follows that q+

iji
= qiji

∂w
∂qiji

/w.
This is the schema for applying the Baum–Eagon theorem of Equa-
tion (24), with T1 as the transformation andw the Lyapunov function.

Proof of Theorem 4. By Lemma 5, monotonic mean fitness in-
crease along trajectories is immediate from the Baum–Eagon Theo-
rem.

Any pure strategy profile of the game WΓ (corresponding to a
point distribution concentrated on a single allele at each locus) con-
stitutes a fixed point of Equation (8), and in fact the only fixed points
of this dynamic are pure strategy profiles. However, if g is a pure
strategy profile of w that is not a Nash equilibrium then it is not
a stable point of the dynamic; using standard dynamics arguments
involving nullclines and separatrices, there exists around g a neigh-
bourhood such that any w-increasing trajectory with initial point in
the interior of that neighbourhood eventually leaves that neighbor-
hood.

In other words there is a basin of repulsion around every such
point; hence the dynamic cannot converge to non-Nash equilibria
points. Convergence will therefore always be to a pure strategy Nash
equilibrium point, i.e., a local maximum of the potential w.

Proof of Theorem 5 This is more or less a corollary of Theorem
4. For each pure Nash equilibrium ν ∈ NWΘ

, let Bν be the set of
elements in ∆(Γ) that asymptotically converge to 1gν . By definition,
this forms an asymptotically stable basin of attraction.
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Proof of Proposition 7. This is an almost direct application of
Theorem 3 from [Baum and Sell, 1968]. We can identify Hν as fol-
lows: for any η > 0, let Vη be the connected component in ∆(Γ) of
{x ∈ ∆(Γ) | w(x) > w(1gν )− η} that contains 1gν .

Let η0 > 0 be the smallest real number such that V η0 , the closure
of Vη0 , contains another critical point of w in addition to 1gν . Set
Hν =

⋃
η<η0

Vη. Theorem 3 of [Baum and Sell, 1968] now applies to
Hν to attain the conclusion.

Proof of Proposition 9. Suppose that at time t the population has
mean fitness w. A sexually reproducing sub-population of weight r
is selected, whose mean fitness is wr, and the complementary asex-
ual sub-population of weight 1 − r therefore has mean fitness w1−r,
such that w = rwr + (1− r)w1−r. At time t+ 1, the offspring popula-
tion of the sexual reproducers has mean fitness w+

r , and the offspring
population of the asexual reproducers has mean fitness w+

1−r.
Since both the T0 and the T1 transformations increase mean fitness

(except at fixed points), it follows that w+
r > wr and w+

1−r > w1−r. But
w+ = rw+

r + (1− r)w+
1−r, hence w+ > w.

Starting from any interior point, the trajectory will follow increas-
ing mean fitness until it arrives at a local maximum, which will be a
pure Nash equilibrium point.

Proof of Theorem 6. Suppose that at time t the population has
mean fitness w. For each partition λ ∈ Λ, a sub-population of weight
rλ of reproduction type λ is selected, whose mean fitness is wλ such
that w =

∑
λ∈Λ rλwλ. At time t+ 1, the offspring population of the λ-

type reproducers has mean fitness w+
λ , with population mean fitness

w+ =
∑

λ∈Λ rλw
+
λ .

Since the Tλ transformations increase mean fitness (except at fixed
points) for all partitions λ, it follows that w+

λ > wλ for all partitions
λ. Hence w+ > w.

Starting from any interior point, the trajectory will follow increas-
ing mean fitness until it arrives at a local maximum, which will be a
pure Nash equilibrium point.

Proof of Theorem 7. In this proof we ask a different question
from the usual questions of regret minimisation: instead of asking
whether an algorithm attains the same asymptotic rate as the best
expert, we suppose that the algorithm converges to the rate of the
best expert and ask whether that rate is equal to some exogenous
rate.
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Let e1, e2, . . . be any environment realisation. Let i be a locus. By
Equation (8), the alleles in locus i are each implementing a replica-
tor equation (with respect to the identical interests game they are
playing against the alleles in the other loci). This implies that the
reproductive dynamic internal to the locus follows a multiplicative
weights updating algorithm with respect to the total environment
payoffs, taking into account both external and internal environments.
Hence, regret minimisation applies to this dynamic and in the limit
the locus attains the average growth rate it would have attained had
it implemented the optimal fixed strategy-in-hindsight within ∆(Ai)
at all times. In other words, the individual locus attains virtual con-
vergence.

From here the proof proceeds inductively. Suppose that under the
true dynamic each locus i exhibits the mixed strategy sequence µi =
(µ1

i , µ
2
i , . . .), where µti ∈ ∆(Ai) for each t. Further, denote by L the

lim sup average growth rate payoff that is attained under the profile
(µ1, µ2, . . . , µm) of these strategy sequences (which is equal for each
locus).

Let a∗1 represent the pure strategy of locus 1 whose lim inf attains
asymptotically zero regret, as in Equation (14), i.e, that asymptot-
ically does as well as L. Locus 2 can then take the perspective of
facing an environment consisting of the external environment along
with internal environment (a∗1, µ

3
i , . . .), and virtually attain the same

payoff with fixed optimal-in-hindsight a∗2, i.e., (a∗1, a
∗
2, µ

3
i , . . .) virtu-

ally attains L.
By induction, the sequence (a∗1, a

∗
2, . . . , a

∗
j−1, µ

j
i , . . .) attains L. At lo-

cus j, implement the optimal-in-hindsight a∗j against (a∗1, a
∗
2, . . . , a

∗
j−1, µ

j+1
i , . . .)

to attain payoff L under (a∗1, a
∗
2, . . . , a

∗
j−1, a

∗
j , µ

j+1
i , . . .).

Continuing by induction, in this way eventually one concludes
that population consisting entirely of the genotype g∗ = a∗1a

∗
2 . . . a

∗
m

is the optimal-in-hindsight genotype.
Proof of Proposition 10. Following the same reasoning as in pre-

vious proofs, consider the perspective of locus i. The payoff received
by locus i is equal to what it would gain if all the other loci were to
play the pure strategy profile q−i = (a∗1, . . . , a

∗
i−1, a

∗
i+1, . . . , a

∗
m).

By assumption the external environment process selecting the re-
alisations We1 ,We2 , . . . is stationary and ergodic. Since the q−i pro-
file is virtually pure and fixed throughout time, the internal environ-
mentwet(·; q−1) reflects the external environment and is similarly sta-
tionary and ergodic. Hence the virtual convergence of locus i, which



MAKING THE MOST OF POTENTIAL: POTENTIAL GAMES AND GENOTYPIC CONVERGENCE36

is equivalent to that of an asexually reproducing population under
the conditions of a stationary and ergodic environment process, is
always to the same payoff. This holds equally true for all loci.

Proof of Theorem 8. The proof is the same as the proof of Theorem
5.

Proof of Proposition 11. The proof is the same as the proof of
Proposition 7.

Proof of Theorem 9. By Equation (12), the alleles in the locus
are implementing a replicator equation (with respect to the sym-
metric potential game they are playing amongst themselves). This
implies that the reproductive dynamic in the locus follows a multi-
plicative weights updating algorithm with respect to the total envi-
ronment payoffs, taking into account both external and internal en-
vironments. Hence, regret minimisation applies to this dynamic and
in the limit the locus attains the average growth rate it would have
attained had it implemented the optimal fixed strategy-in-hindsight
within ∆(A) at all times.

Proof of Theorem 10. Let e1, e2, . . . be any environment realisa-
tion. Let i be a locus. By Equation (12), the alleles in locus i are each
implementing a replicator equation (with respect to the symmetric
potential game they are playing amongst themselves). This implies
that the reproductive dynamic internal to the locus follows a multi-
plicative weights updating algorithm with respect to the total envi-
ronment payoffs, taking into account both external and internal en-
vironments. Hence, regret minimisation applies to this dynamic and
in the limit the locus attains the average growth rate it would have
attained had it implemented the optimal fixed strategy-in-hindsight
within ∆(Ai) at all times. In other words, the individual locus attains
virtual (possibly polymorphic) convergence.

From here the proof proceeds inductively as in the proof of The-
orem 7. Suppose that under the true dynamic each locus i exhibits
the mixed strategy sequence µi = (µ1

i , µ
2
i , . . .), where µti ∈ ∆(Ai) for

each t. Further, denote by L the lim sup average growth rate pay-
off that is attained under the profile (µ1, µ2, . . . , µm) of these strategy
sequences (which is equal for each locus).

Letting s∗1 represent the fixed (possibly mixed) strategy of locus
1 whose lim inf attains asymptotically zero regret, as in Equation
(14), i.e, that asymptotically does as well as L. Locus 2 can then take
the perspective of facing an environment consisting of the external
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environment along with internal environment (s∗1, µ
3
i , . . .), and vir-

tually attain the same payoff with fixed optimal-in-hindsight s∗2, i.e.,
(s∗1, s

∗
2, µ

3
i , . . .) virtually attains L.

Continuing argument by induction, in this way eventually one
concludes that population consisting entirely of the genotype g∗ =
s∗1s
∗
2 . . . s

∗
m is the optimal-in-hindsight genotype.

APPENDIX C. PROOF OF CONVERGENCE IN POTENTIAL GAMES
UNDER THE POLYNOMIAL MULTIPLICATIVE

WEIGHTS UPDATE ALGORITHM

C.1. Preliminary Setup. Let (A, u, φ) be a potential game, where
A = A1 × . . . × Am is the set of action profiles, u : A → Rm the
payoff function, and Φ : A → R the potential. For x ∈ A, we use
xi to denote the action in x of the player i and x−i to denote the ac-
tions in x of the players apart from player i. For simplicity we will
assume that |Ai| = k uniformly for all players; the extension to the
more general case is straightforward. Enumerating the elements of
Ai, the j-th action of player i is aij .

A mixed strategy of player i will be denoted qi = (qi1 , . . . , qik), and
a profile of strategies q = (q1, . . . , qm) ∈ ∆(A1)× . . .×∆(Am). The ap-
plication of a profile q yields an expected payoff for player i that we
will denote ui(q). Given an action profile x = (x1j1 , x2j2 , . . . , xmjm) ∈
A and a profile of strategies q, denote

(35) qx =
∏

1≤ν≤m

qνjν

and

(36) qx−i =
∏

1≤ν≤m;ν 6=i

qνjν .

Suppose that each player is applying the multiplicative updates
algorithm to update the mixed strategy he uses from one time period
to the next. To interpret what is meant by this, we need to specify the
payoff player i receives for placing weight qij on action aij when his
overall expected payoff is ui(q).

Suggestively borrowing notation introduced earlier here in the con-
text of alleles, denote Caij = {x ∈ A | xi = aij}, i.e., the set of ac-
tion profiles with the action of player i fixed at aij . Next suppose
that player i fixes action aij while the other players choose mixed
strategies q−i. In this case, denote the expected payoff for player i by
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uij(q−i), which is

(37) uij(q−i) :=
∑
x∈Caij

qx−iui(x).

Denote by uij(qij , q−i) the payoff player i receives for placing weight
qij on action aij when the other players choose q−i. Using Equation
(37), this is

(38) uij(qij , q−i) := qijuij(q−i).

With that we can specify what it means for each player to apply the
multiplicative weights updates algorithm for η > 0. When q is the
profile of mixed strategies, player i views the tuple (ui1(qi1 , q−i), . . . , uik(qik , q−i)).
In response, the mixed strategy that player i chooses in the next time
period is given by

(39) q+
ij

= qij
1 + ηuij(q−i)∑

h qih(1 + ηuih(q−i))

For ease of reading, we will from here express Equation (39) more
simply as

(40) q+
ij
∝ qij(1 + ηuij(q−i)),

supressing the denominator whose entire purpose is only to ensure
that the result is a probability distribution.

C.2. Proof of Theorem 1. We prove this first in the special case that
the potential game is an identical interests game and that the updat-
ing rule is the parameter-free case, i.e., for each i, j, ui(x) = uj(x) =
Φ(x), so that each player gets the same payoff (the potential) for each
profile of actions, and Equation (40) becomes

(41) q+
ij
∝ qijuij(q−i).

From here most of the work is unravelling of definitions. From
Equations (37) and (38) and ui(x) = Φ(x) we obtain

(42) uij(q−i) =
∑
x∈Caij

qx−iΦ(x).

At the same time, the expected payoff of player i under q is Φ(q) =∑
x∈A qxΦ(x). It follows that for each available action aij ,

(43)
∂Φ

∂qij
=
∑
x∈Caij

qx−iΦ(x).
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Putting it all together yields

q+
ij
∝ qij

∂Φ

∂qij
,

which is exactly what is needed for application of the Baum–Eagon
Theorem (since Φ(q) is a polynomial function of the various prob-
ability weights of q). It follows that under this dynamic the value
of Φ increases monotonically from one time period to the next, with
convergence to a fixed point that is a Nash equilibrium.

Moving on from the parameter-free case, consider next the more
general polynomial update rule

q+
ij
∝ qij(1 + ηuij(q−i)) = qij + qij(ηuij(q−i)),

but still maintain the assumption of an identical interest game, i.e.,
ui(x) = uj(x) = Φ(x) for all i, j, so that Equation (42) still holds.

Define
Ψ(q) =

∑
1≤i≤m

∑
1≤j≤k

qij + ηΦ(q).

Then

(44)
∂Ψ

∂qij
= 1 + η

∂Φ

∂qij
,

while Equation (43) holds as before, i.e., ∂Φ
∂qij

=
∑

x∈Caij
qx−iΦ(x).

Putting it all together yields

q+
ij
∝ qij

∂Ψ

∂qij
= qij + qij(ηuij(q−i)),

which is sufficient for obtaining the result we seek by appeal to the
Baum–Eagon Theorem.

Finally, in greatest generality suppose that the game is fully a po-
tential game as opposed to an identical interests game. In this case,
it is well known that the potential game can be decomposed into
an identical interests game and a dummy game. That is, ui(q) =
Φ(q) + Di(q−i), where Φ is an identical interests game and Di the
payoff to i from the dummy game D, depends solely on q−i but does
not change at all with changes in qi.

It follows that ∂ui
∂qij

= ∂Φ
∂qij

: in other words, this case essentially re-
duces to the case of an identical interests game from the perspective
of partial differentiation with respect to the weights of the actions of
player i. Hence, with minor modifications the same proof as applied
earlier applies to the general case; we omit the obvious details.
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APPENDIX D. BASINS OF ATTRACTION AND REPULSION

As proved in [Novak and Barton, 2017], using the Baum–Eagon
inequality, the haploid sexual replicator dynamic, under fixed fitness
conditions, converges to fixed points of the dynamic.5

It is clear from inspection of Equation (8) that any pure strategy
profile is a fixed point of the dynamic (and conversely the only fixed
points are pure strategy profiles); the set of pure Nash equilibria is a
proper subset of the set of pure strategy profiles. Details regarding
basins of attraction and repulsion, however, need also to be shown.

We will make use of a collection of relative distribution weights
(relative to an allele aij) {etg,ij}g∈Caij . To define this, let etg,ij = 0 if
g /∈ Caiji . Otherwise, define

(45) etg,ij :=
dtg∑

g′∈Caiji
dtg′
.

In words, etg,ij is the weight of gentotype g amongst the genotypes
containing aij . Clearly,

∑
g∈Caij

etg,ij = 1.

When linkage equilibrium holds, we can re-express etg,ij associated
with allele aiji when g = a1j1a2j2 . . . amjm as

(46) etg,ij =
dtg∑

g′∈Caiji
dtg′

=
qt1j1q

t
2j2
. . . qtmjm∑

g′∈Caiji
dtg′

.

Equation (7), defining the marginal fitness of allele aij at time t is
rewritten in these terms as

(47) wtij :=
∑
g∈Caij

wtge
t
g,ij.

It will be useful to express Equation (47) solely in terms of {qi}
and {wg}. To that end, for a fixed aiji ∈ Ai, enumerate the elements
of Caiji as (g1, . . . , gl). Each such g ∈ Caiji is by definition a string of
alleles a1j1a2j2 . . . aiji . . . amjm where aiji is the same for each g ∈ Caiji
but the other alleles vary from one such genotype to the other.

From Equation (6), under linkage equilibrium, for each such g we
have dtg =

∏m
ν=1 q

t
νjν = qt1j1q

t
2j2
. . . qtiji . . . q

t
mjm . For future reference we

5 This result is actually mentioned, without a detailed proof, all the way back in
the original paper by Leonard E. Baum and J. A. Eagon [Baum and Eagon, 1967].
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will want to use a ‘reduced form’ of this expression, defined as

(48) dtg,−i =
∏

1≤ν≤m,ν 6=i

qtνjν = qt1j1q
t
2j2
. . .
�
�@
@
qtiji . . . q

t
mjm

by which we mean the m − 1-fold product that does not include qtij
in it. Then we can re-write Equation (46) as

etg,iji =
dtg∑

g′∈Caiji
dtg′

=
qt1j1q

t
2j2
. . . qtmjm∑

g′∈Caiji
dtg′

(49)

= qtiji
dtg,−i∑

g′∈Caiji
dtg′

=
qtiji
qtiji

dtg,−i∑
g′∈Caiji

dtg′,−i

=
dtg,−i∑

g′∈Caiji
dtg′,−i

.

Note that this entirely removes dependence on qtiji ; all dependence
is on the allelic frequencies of loci apart from locus i. We can go even
further. Denote in vector notation ~dtiji,−i := (dtg1,−i

, . . . , dtgl,−i), with
respect to the eumeration of (g1, . . . , gl) as the elements of Caiji . By
tracing through the definitions, it becomes clear that the dependence
on aiji is superfluous. In other words, for aiji , aij′i ∈ Ai, two alleles in
locus i, one has ~dtiji,−i = ~dtij′i,−i

. We can therefore denote this vector

uniformly as ~dt−i.
Similarly,

∑
g∈Caiji

dtg,−i =
∑

g∈Ca
ij′
i

dtg,−i for aiji , aij′i ∈ Ai. Hence we

can choose any one of them and uniformly denoteN−i :=
∑

g∈Caiji
dtg,−i.

Continuing with the vector notation, denote ~wiji := (wg1 , . . . , wgl)
with respect to the enumeration of (g1, . . . , gl) as the elements ofCaiji .
In this we cannot avoid dependence on the specific allele aiji .

From here we can rewrite Equation (47) as

(50) wtiji =
∑

g∈Caiji

wtge
t
g,iji

=
1

N−i
〈~dt−i, ~wiji〉

using the vector dot product.

Finally, since the mean fitness wti =
∑k

j=1 q
t
ijw

t
ij , this becomes

(51) wti =
1

N−i

k∑
j=1

qtij〈~dt−i, ~wij〉.
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D.1. Basins of Repulsion Around Non-Equilibrium Points. Sup-
pose that fitness values wg are fixed over time. Let (a∗1, a

∗
2, . . . , a

∗
m)

be a pure strategy profile of the game that is not a Nash equilib-
rium. In the biological interpretation, this corresponds to a popula-
tion composed solely of genotypes g = a∗1, a

∗
2, . . . , a

∗
m, in which case

w = wg = w(a∗1, a
∗
2, . . . , a

∗
m).

By definition of a non-equilibrium, there is at least one player/locus
i such that, if we write a∗

i
= aij then there is aij′ such thatw(aij′ ; a

∗
−i) >

w(a∗
i
; a∗−i). For ε > 0, construct for each player i the mixed strategy

qεi that gives weight 1− ε to pure action a∗i ∈ Ai and spreads the rest
of the weight ε amongst all the other actions in Ai.

We claim that for sufficiently small ε, the haploid sexual repli-
cator dynamic at the mixed strategy (qε1, . . . , q

ε
m) draws away from

(a∗1, a
∗
2, . . . , a

∗
m).

To see this, note that for (qε1, . . . , q
ε
m) for small ε, for any i and iji ∈

Ai, it is the case that wiji is very close to w(aiji ; a
∗
−i). This is because

by Equation (50) ,

wiji =
1

N−i
〈~dt−i, ~wiji〉,

where each element dg,−i ∈ ~d−i, for g = a1j1 . . . aiji . . . amjm , is defined
by dg,−i =

∏
1≤ν≤m,ν 6=i q

ε
νjν . By the definition of (qε1, . . . , q

ε
m), for small

ε the only relevant dg,−i that has appreciable weight is that associated
with g = a∗1 . . . aiji . . . a

∗
m, where dg,−i =

∏
1≤ν≤m,ν 6=i(1− ε). Hence wiji

is very nearly w(aiji ; a
∗
−i).

In particular, wij′ ≈ w(aij′ ; a
∗
−i) > w(ai∗ ; a

∗
−i) ≈ ϕi∗ . By continu-

ity, for sufficiently small ε this strict inequality can be guaranteed to
hold, wij′ > wi∗ .

Since the players are implementing the haploid sexual replicator
equation, Equation (8), in updating from one period to the next,
when wij′ > wi∗ at time t it follows that at time t + 1 in the distribu-
tion qt+1

i
relatively greater weight will be given to aij′ and relatively

less to a∗
i
. It follows that in the step from t to t+1 the dynamic moves

away from (a∗1, a
∗
2, . . . , a

∗
m).

This is sufficient to conclude that the dynamic must converge to a
pure Nash equilibrium.

D.2. Proof of Proposition 8. Suppose that a∗ = (a1j∗1
a2j∗2

. . . amj∗m) is
a pure strategy Nash equilibrium profile of the game.
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Let B ⊂ D be defined as the collection of mixed strategy profiles
(q1, . . . , qm) ∈ D such that for all i:

(1) qij∗i > qiji for all ji 6= j∗i ∈ Ai, and
(2) wij∗i > wiji for all ji 6= j∗i ∈ Ai.

In words, B is the set of mixed strategy profiles such that for each
i, within the allelic frequency distribution qi the greatest weight is
placed on a1j∗1

and at the same time the marginal fitness of a1j∗1
is

the highest against all its competing alleles in locus i. (Recall that by
Equation (7) wiji is a function of genotypic density and hence also a
function of (q1, . . . , qm).)

We can now proceed to show that B is an exponentially stable
basin of attraction around a∗. To see this, first note that B is not
empty because the profile a∗ is trivially an element of B. By continu-
ity, B is then a neighbourhood of a∗.

Next, let (qt1, . . . , q
t
m) ∈ B at time t. For any i, since wij∗i > wiji for

all ji 6= j∗i , by Equation (8) it follows that at t+ 1 the weight of allele
aij∗i , i.e. qt+1

ij∗i
, relative to qt+1

iji
for any other allele, only increases. So

the first condition for qt+1
ij∗i

is satisfied.

Next, since a∗ is a Nash equilibrium, w(a∗) > w(aiji ; a−i∗) for all
ji 6= j∗i . Recall that wt+1

iji
= 1

N−i
〈~dt+1
−i , ~wiji〉. Since the weight qt+1

i′j∗
i′

increases relative to qt+1
i′ji′

for all i′, and w(aij∗i ; a−i∗) > w(aiji ; a−i∗) for

all ji 6= j∗i , it can only be the case that 〈~dt+1
−i , ~vij∗i 〉 > 〈~d

t+1
−i , ~viji〉, i.e.,

wt+1
ij∗i

> wt+1
iji

. Hence the second condition is satisfied and it follows
that (qt+1

1 , . . . , qt+1
m ) ∈ B.

Finally, since for each i the weight qij∗i increases relative to any
other qiji monotonically (and even at an increasing rate), asymptot-
ically starting from any (q1, . . . , qm) ∈ B the dynamic converges to
a∗.
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