Two and a half hours

THE UNIVERSITY OF MANCHESTER

CALCULUS AND VECTORS B

25 January 2019

14.00 - 16.30

Answer **ALL FIFTEEN** questions.

The use of electronic calculators and formula tables are <u>not</u> permitted.

© The University of Manchester, 2019

1. Sketch in the complex plane the region where complex values of z satisfy

$$3 < |3z - 9 + i| < 6.$$

[2 marks]

2. Sketch graphs of the following real-valued functions of x satisfying

(a)

$$f(x) = -e^{-|x+2|} + 1;$$

(b)

$$f(x) = \ln(4x^2).$$

[4 marks]

3. A function f is defined by

$$f(x) = -\sqrt{-x - 1}.$$

- (a) Find a formula for the inverse function $f^{-1}(x)$.
- (b) Sketch the graphs of $f^{-1}(x)$ and f(x) using the same coordinate axes.

[4 marks]

4. By using implicit differentiation, find the derivative of the inverse trigonometric function

$$\cos^{-1}(x)$$
.

[4 marks]

5. Find the limits

(a)

$$\lim_{x \to 0} \frac{1 - \cos^2(x)}{x^2};$$

(b)

$$\lim_{x \to \infty} \sqrt{x^2 + 10x} - x.$$

[4 marks]

6. Find an equation of the tangent line to the elipse

$$x^2 + xy + y^2 = 3$$

at the point (1,1).

[4 marks]

7. Sketch the region between the curves $y^2=x$ and $x^2=y$ in Cartesian coordinates (x,y) and find the area of this region.

[4 marks]

8. Find the first three nonzero terms in the Maclaurian series for the function

$$f(x) = xe^{-x^2}.$$

[4 marks]

9. The distance $\,\ell\,$ of the point $\,\vec{P}\,$ from the plane $\,(\vec{r}-\vec{r}_0)\cdot\vec{n}=0\,$ can be calculated as

$$\ell = \frac{|(\vec{P} - \vec{r_0}) \cdot \vec{n}|}{|\vec{n}|}.$$

Find the distance between the point (2,0,1) and the plane that passes through the three points (2,3,4), (1,2,4), (4,2,1).

[6 marks]

10. The distance $\,\ell\,$ of the point $\,ec{P}\,$ from the line $\,ec{r}=ec{r}_0+t\,ec{v}\,$ can be calculated as

$$\ell = \frac{|(\vec{P} - \vec{r_0}) \times \vec{v}|}{|\vec{v}|}.$$

Find the distance between the point (2,2,1) and the line

$$2x - 4 = y - 3 = -\frac{z}{2}.$$

[6 marks]

11. Sketch the region D between y = 2x, y = 2, x = 0 and evaluate the following integral

$$\int \int_D e^{y^2} dy dx.$$

[8 marks]

12. Use polar coordinates to evaluate the following integral

$$\int \int_D dA,$$

where D is the interior of the curve $x^2 - 6x + y^2 = 0$.

[8 marks]

13. Find the volume of the solid bounded by the plane z=0 and the paraboloid

$$z + x^2 + y^2 = 1.$$

[5 marks]

14. Find an equation of the tangent plane to the surface

$$z = \sqrt{x + e^{4y}}$$

at the point (3,0,2).

[6 marks]

15. Find all critical points of the function

$$f(x,y) = e^{4y - x^2 - y^2}$$

and identify whether each one is a maximum, a minimum or a saddle point.

[6 marks]