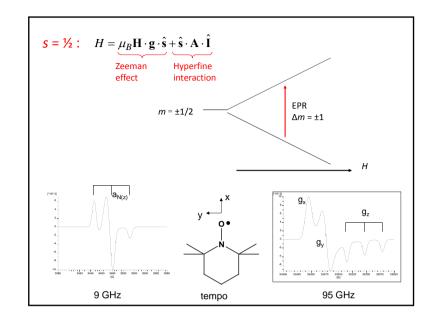

Electron Paramagnetic Resonance (EPR) Spectroscopy

(a.k.a. ESR, EMR)


Lecture VI. More than one unpaired electron, $S > \frac{1}{2}$ (1)

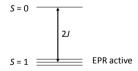
Eric McInnes & David Collison, EPSRC UK National EPR Facility & Service Photon Science Institute, The University of Manchester eric.mcinnes@manchester.ac.uk david.collison@manchester.ac.uk

Interaction between two unpaired electrons $s = \frac{1}{2}$ \rightarrow total spin states S (= 0 and 1)

- States are separated in energy by the isotropic exchange parameter, J
- When J is very small, comparable to the hyperfine interaction, A: referred to as bi-radicals
- Form of fluid spectra depends on magnitude of J versus A

More than one unpaired electron in degenerate orbitals

•Electron 1: $s_1 = 1/2$ Electron 2: $s_2 = \frac{1}{2}$

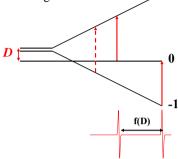

 \Rightarrow

• Define a total spin S with possible values s_1+s_2 and s_1-s_2

S = 1

•Hund's rule: ground state has maximum S

•S = 1 and 0: a spin triplet and spin singlet.



- Differ in energy because of differing electron-electron repulsions.
- •Repulsion less in triplet ⇒ Hund's rule
- •Quantified by the exchange constant (or integral), J
- Very large (> 10³ cm⁻¹) for electrons on same paramagnetic centre.

•For EPR can consider as isolated s = 1

More than one unpaired electron: S = 1

- •Now have to consider e-e interactions (usually >> e-n).
- $\bullet \rightarrow$ zero-field splitting, D
- •New Zeeman diagram...

- •In general, 2S allowed transitions per orientation: fine structure.
- •Spectra spread over much larger field ranges

s=1, axial symmetry, road map and powder spectrum: In general for s>1/2, cannot derive analytical expression for resonance fields at arbitrary orientation. Need to diagonalise matrix at each θ, ϕ .

Zero-Field Splitting

- · Two mechanisms:
- (i) Dipolar e-e interaction ($\propto 3\cos^2\theta$ -1). Dominant for organics
- (ii) Spin-orbit coupling. Dominant for transition ions
- •Anisotropic: have D_x , D_y and D_z parameters
- •If purely dipolar then: $D_x + D_y + D_z = 0$
- •(hence no fine structure in fluid solution)
- •...then only two independent parameters and can define...

ZFS parameters, *D* and *E*:

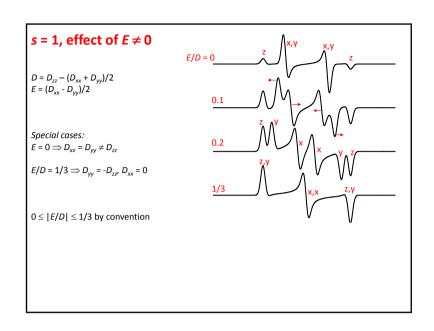
 $D = D_z - (D_x + D_y)/2$ Axial term

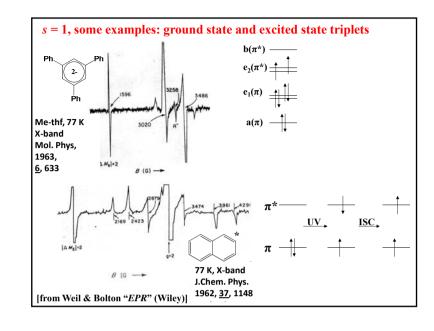
 $E = (D_x - D_y)/2$

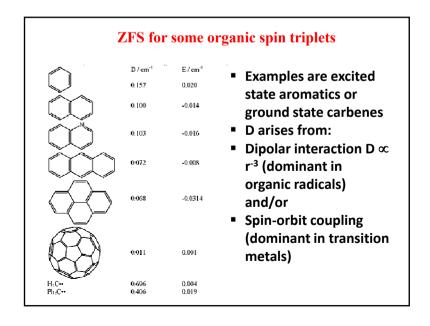
Rhombic term

•Symmetry: isotropic (D = E = 0), axial (D \neq 0, E = 0), rhombic (E \neq 0).

s = 1 in zero field.

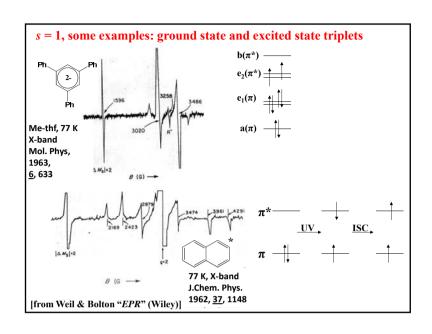

 $\begin{array}{c}
\pm 1 \\
0 \\
D > 0, E = 0
\end{array}$

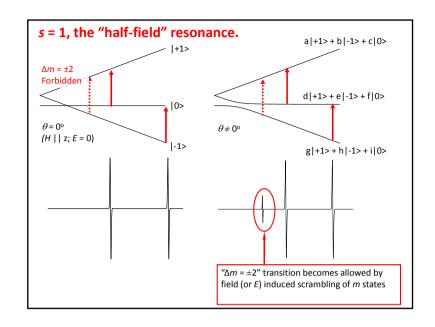

 $1/\sqrt{2(|+1>\pm|-1>)} - \underbrace{\frac{1}{2E}}_{E \neq 0} D$

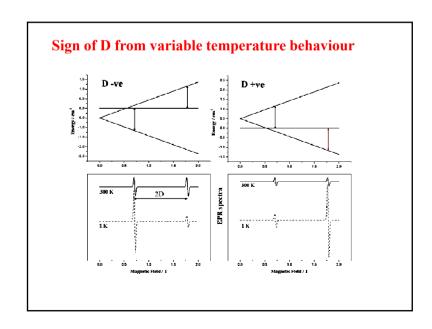

2D/3 2D/3

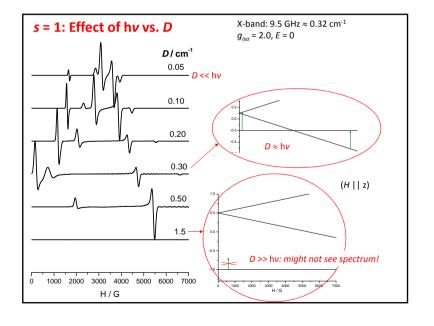
E = D/3

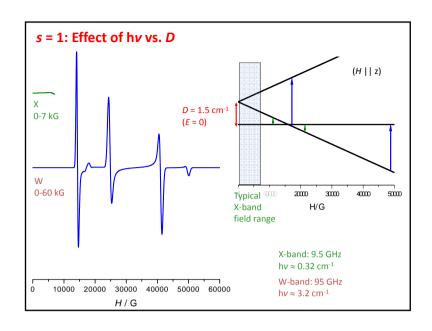
- \bullet E mixes states differing by ΔM_S = ± 2 , and breaks degeneracy
- •Can define "rhombicity", $\lambda = |E/D|$
- • λ = 0 (axial) to 1/3 (rhombic limit)
- • λ > 1/3 \Rightarrow redefinition of axes

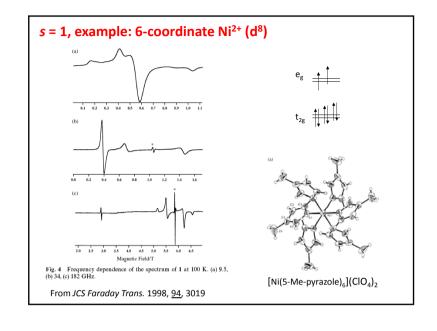


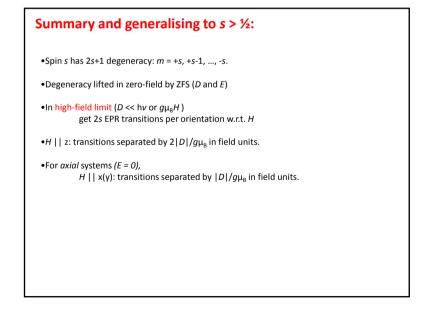

Electron Paramagnetic Resonance (EPR) Spectroscopy

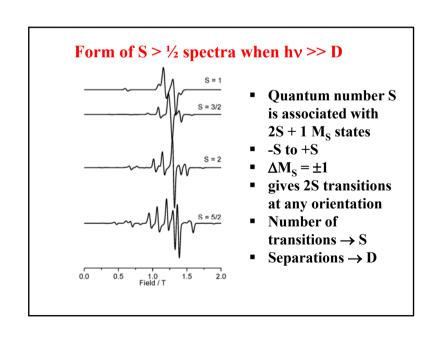

(a.k.a. ESR, EMR)

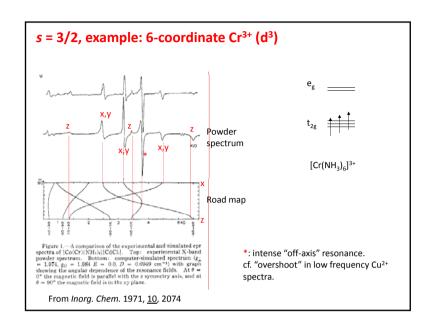

Lecture VII. More than one unpaired electron, $S > \frac{1}{2}$ (2)

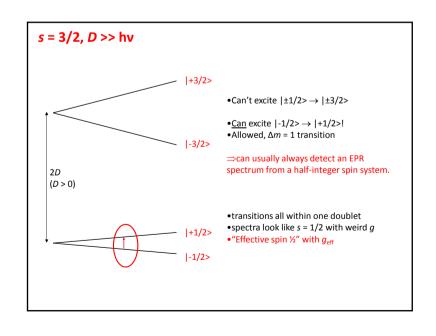

Eric McInnes & David Collison, EPSRC UK National EPR Facility & Service Photon Science Institute, The University of Manchester eric.mcinnes@manchester.ac.uk david.collison@manchester.ac.uk

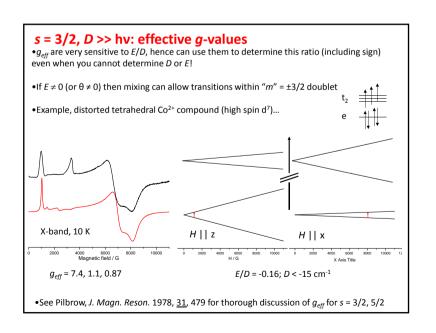






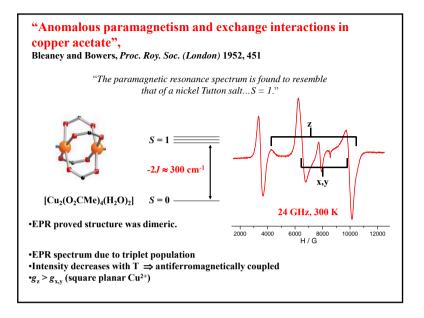






Some special features for half-integer spin For example: s = 3/2; $m \pm 3/2$, $\pm 1/2$ (spin quartet) Zero-field energy matrix ($|m\rangle$ basis): $\begin{vmatrix} |+3/2\rangle & |-1/2\rangle & |+1/2\rangle & |-3/2\rangle \\ \langle +3/2| & D & \sqrt{3}E & 0 & 0 \\ \langle -1/2| & \sqrt{3}E & -D & 0 & 0 \\ \langle -1/2| & 0 & 0 & -D & \sqrt{3}E \\ \langle -3/2| & 0 & 0 & \sqrt{3}E & D \end{vmatrix} + \sqrt{[D^2+3E^2]}$ $E \text{ mixes } \Delta m \pm 2$, as before $\Rightarrow \text{ cannot mix} \pm m$ $\Rightarrow \text{ two-fold degeneracy retained in zero-field even}$

with $E \neq 0$ (Kramers' theorem)


Electron Paramagnetic Resonance (EPR) Spectroscopy

(a.k.a. ESR, EMR)

Lecture VIII. The anomalous paramagnetism of copper acetate

Eric McInnes & David Collison, EPSRC UK National EPR Facility & Service Photon Science Institute, The University of Manchester eric.mcinnes@manchester.ac.uk david.collison@manchester.ac.uk

Magnetic properties of copper acetate 0.35 0.3 Oscillogram showing 50 100 200 250 150 hyperfine structure with magnetic field parallel to zaxis Variation of \(\chi T vs T for Cu_2(OAc)_4.2H_2O \) **Antiferromagnetic coupling** S = 0 ground state

