

Graphene superlatives

- thinnest imaginable material
- strongest material ever measured (theoretical limit)
- stiffest known material (stiffer than diamond)
- most stretchable crystal (up to 20% elastically)
- record thermal conductivity (outperforming diamond)
- highest current density at room T (million times of those in copper)
- highest intrinsic mobility (100 times more than in Si)
- conducts electricity in the limit of no electrons
- lightest charge carriers (zero rest mass)
- longest mean free path at room T (micron range)
- most impermeable (even He atoms cannot squeeze through)
- **.....?**

Morphological

Surface area – 1gr = 2630 m² Aspect ratio varies – typically 2 for solvent exfoliation

Optical

Transparent to light (97.7 %) and electrons

Mechanical

Stiffness = 1 Tpa Strength = 130 GPa

Chemical

Easily functionalised Processable

Producing graphene

Price (mass production)

Beyond graphene: other 2D materials

2D boron nitride

2D NbSe₂

From 3D systems

Beyond Graphene

Novoselov et al., PNAS (2005)

High Quality
Different From 3D Precursor
2D Bi₂Sr₂CaCu₂O_x 2D MoS₂

1μm

Application sectors

Source: Future Markets

Graphene road map

The National Graphene Institute (NGI)

http://www.graphene.manchester.ac.uk/

The National Graphene Institute (NGI)

The University of Manchester

Spinouts

Graphene research 2-Dtech **Graphene Industries**

Life Sciences

Sensors, drug delivery Tissue engineering Nanotoxicology

Physics

Fundamental properties Novel 2D materials and hetero-structures

Materials

Process routes Characterisation Standards

Chemistry

Composites Membranes, barriers and coatings

Electronics

Sensors Semiconductor devices

Graphene research

The National Graphene Institute (NGI)

Knowledge Exchange @ the NGI

To carry out short-term feasibility style, knowledge exchange application projects in the areas of advanced composites, barriers/membranes, surface modification/coatings, energy-storage materials, biomaterials and medical devices

Graphene capabilities @ the NGI

NGI Partnership models

Strategic Partnerships

- Mutual partnerships with strategic (≥5 year) goals
- Support for underpinning infrastructure and company /sector specific research
- Both parties bring IP and resources
- Expected ≥£10m programmes
- Partners influence research direction
- Partners gain increasearch

Project Partnerships

- Helping companies to put graphene on their roadmaps
- Individual projects, typically 1-3 year duration and topic specific
- Includes Collaborative R&D, Feasibility Studies/ Consultancy, Studentships, KTP, CASE, IAA..

Graphene Industry Group

- The UK National
 Grouping for graphene materials, characterisation, standards and applications
- Regular industry briefings
- Focus Groups to build Project and Strategic Partnerships

NGI Industry partners

Strategic Partner

Project Partners: Graphene-based membranes
Project Partners: Electrochemical Energy Storage

Project Partners: Other

Electrical Functionality

- Better lightning strike resistance
- Good anti-static behaviour
- Improved high-voltage insulation

Barrier Functionality

- Improved environmental protection
- Leak-proof composite gas tank cylinders

Damage Tolerance

- Better impact performance
- Improved fatigue resistance
- Better wear resistance
- Strain sensing

High Temperature Tolerance

- Improved heat distortion temperature
- Better fire retardancy

Graphene-based membranes

- Molecular Separations
- Ionic Conductors
- Sensors
- Barriers

Crown is working with the NGI to improve its food packaging products and customer experience through the use of graphene-based membranes as barrier materials

Batteries and capacitors

- Supercapacitors: <u>energy</u> bottle-neck (3-5 W h kg⁻¹)
- Batteries: <u>power</u> bottle-neck (10³ W kg⁻¹)

- > SHARP is working with the National Graphene Institute to explore the benefits of graphene in electrochemical storage devices.
- SHARP is excited to be part of a project that is looking to produce graphene on a cost competitive scale.

Biomaterials and Medical devices

Servant *et al., Adv. Health. Mater.,* **2014**, *in press* Servant *et al., BMCL Digest*, **2014**, *24*, 1638-1649