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Luba Běnúšková

Jort van Mourik

Igor Farkaš

Ali Rodan

Jochen Steil

Nick Gianniotis

Manfred Opper

Alessandro Sperduti

...

Theory and Applications of State Space Models for Time Series Data – a Personal View – p.2/98



Dynamical processes

Imagine a "box" inside which adynamic process(i.e. things change in
time) takes place. At timet, the"state of the system"is x(t) ∈ X .

Thedynamicscan beautonomous(e.g. "happens by itself"), or
non-autonomous(e.g. driven by external input).

x(t) = f(x(t− 1)), x(t) = f(u(t), x(t− 1))

Thedynamicscan becontinuous time(e.g. time is taken as a continuous
entity - dynamics can be described e.g. by differential equations), or
discrete time(e.g. changes happen in discrete time steps- can be described
e.g. by iterative maps).

dx(t)
dt

= f(x(t)),
dx(t)
dt

= f(u(t), x(t))
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Dynamical processes - cont’d

Thedynamicscan bestationary(e.g. the law governing the dynamics is
fixed and not allowed to change), ornon-stationary(e.g. the manner in
which things change is itself changing in time).

x(t) = ft(x(t− 1)), x(t) = ft(u(t), x(t− 1))

dx(t)
dt

= ft(x(t)),
dx(t)
dt

= ft(u(t), x(t))

Thedynamicscan bedeterministic(as above), orstochastic(e.g. corrupted
by some form of dynamic noise). One now must work with full
distributions over possible "states"of the system!

p(x(t) | x(t− 1)), p(x(t) | u(t), x(t− 1))
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Observing dynamical processes

We can have a"telescope"with which to observe the "box" inside which a
dynamic process is happening, e.g. we can have access to some
coordinates of the dynamics, or some otherreadout functionfrom them.
We will call such observed entitiesobservations.

y(t) = h(x(t)), y(t) = h(u(t), x(t))

Reading out of the observations can be corrupted by anobservational
noise. In this case we are uncertain about the value of observations andcan
only havedistributions over possible observations.

p(y(t) | x(t)), p(y(t) | u(t), x(t))

Theory and Applications of State Space Models for Time Series Data – a Personal View – p.5/98



State space model - state and state transition

We impose that thedynamic process we are observing is governed by a
dynamic law prescribing how the state of the system evolves in time. The
state captures all that we need to know about the past in order todescribe
future evolution of the system.

x(t) = f(x(t− 1)), x(t) = f(u(t), x(t− 1))

dx(t)
dt

= f(x(t)),
dx(t)
dt

= f(u(t), x(t))

p(x(t) | x(t− 1)), p(x(t) | u(t), x(t− 1))
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State space model - readout from states

We can haveaccess to the dynamics through some function of the states
producing observations.

y(t) = h(x(t)), y(t) = h(u(t), x(t))

p(y(t) | x(t)), p(y(t) | u(t), x(t))

It can be possible to "recover" the states (in some sense- e.g. up to
topological conjugacy) from the observations -"observable states", or not -
"unobservable states".
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I only have observations...

In many cases we only have access to observations from the underlying
dynamics and perhaps also to the driving input stream.

In oder to"generalize beyond the observations"we must somehowcapture
the law describing how the underlying dynamics evolves in time.

In some cases we have a deep theory underpinning such generalization
processes. For example, fordeterministic autonomous dynamics observed
through a noiseless coordinate-projection readout, we haveTaken’s
Theoremguaranteeing (under some rather mild conditions) recovery of the
original dynamic law and its attractor (up to topological conjugacy).

Many"input time-lag window" (finite input memory) approachestake their
inspiration from Taken’s Theorem. The situation can get much more
complicated once dynamic (and/or observational) noise is considered.
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Focus of principles, discrete case

a finitealphabetof abstract symbolsA = {1, 2, ..., A}

possibly infinitestringsoverA

left-to-right processingof strings
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Making sense of time series

"the environment"

...abbacbaaaccbdaabdcccca...

sense out of this...
can I make some

hmmm, how

What is your task?

modelling
prediction

...
classification
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Left-to-right processing of sequences

One can attempt to reduce complexity of the processing task

group together histories of symbols that have “the same functionality”
w.r.t. the given task(e.g. next-symbol prediction)

Information processing states(IPS)are equivalence classes over sequences

IPS code what is important in everything we have seen in the past
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IPS - discrete state space, inputs, observations

A simplesequence classificationexample -FSA
IPS -1, 2
inputs -a, b
outputs - 2 "Grammatical": odd number of b’s, 1 "Non-Grammatical":
even number of b’s (including none)

1 2

a

a
b

b
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IPS - a simple example - transducer

translate input streams over{a, b} to sequences over{x, y}
IPS -1, 2
inputs -a, b
outputs -x, y

1 2

a|x

a|x
b|y

b|x
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IPS - the simplest case - finite time lag

The simplest construction of IPS is based onconcentrating onthe very
recent (finite) past
e.g. definite memory machines, finite memory machines, Markov models

Example:
Only the last5 input symbols matter when reasoning about what symbol
comes next
... 1 2 1 1 2 3 2 1 2 1 24 3 2 1 1
... 2 1 1 1 1 3 4 4 4 4 14 3 2 1 1
... 3 3 2 2 1 2 1 2 2 1 34 3 2 1 1

All three sequences belong to the same IPS“43211”
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Probabilistic framework - Markov model (MM)

What comes next?
... 1 2 1 1 2 3 2 1 2 1 24 3 2 1 1| ?
... 2 1 1 1 1 3 4 4 4 4 14 3 2 1 1| ?
... 3 3 2 2 1 2 1 2 2 1 34 3 2 1 1| ?

finite context-conditional next-symbol distributions
P (s | 11111)
P (s | 11112)
P (s | 11113)
...
P (s | 11121)
...
P (s | 43211)
...
P (s | 44444)

s ∈ {1, 2, 3, 4}
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Difficult times...

but, who
is going to pay
for all this?

necessary things only!
difficult times, pay for
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Markov model

MM are intuitive and simple, but ...

Number of IPS(prediction contexts)grows exponentially fast with
memory length

Large alphabets and long memories are infeasible:

computationally demanding and

very long sequences are needed to obtain sound statistical estimates
of free parameters
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Variable memory length MM (VLMM)

Sophisticated implementation of potentially high-order MM

Takes advantage of subsequence structure in data

Saves resources bymaking memory depth context dependent

Usedeep memory only when it is needed

Natural representation of IPS in form ofPrediction Suffix Trees

Closely linked to the idea ofuniversal simulation of information sources.
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Prediction suffix tree (PST)

IFS are organized on nodes of PST
Traverse the tree from root towards leaves in reversed order
Complex and potentially time-consuming training

1

1

1

1

2

2

2

time

P( . |   122  )

P( . |   12  )

P( . |   222  ) 

probability distribution

has associated next−symbol

P( . |   i   )

Each node i

Theory and Applications of State Space Models for Time Series Data – a Personal View – p.19/98



Continuous state space, discrete inputs/outputs

... 1 2 2 3 2 1 1 1 2

Delay

W

Parametrized DS

Output

States of the DSform IPS: x(t) = f(u(t), x(t− 1); w)

These statescode the entire history of symbolswe have seen so far
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The power of contractive DS
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Affine input-driven dynamics

x(t) = f(u(t), x(t− 1))

= ρ · x(t− 1) + (1− ρ) · u(t).

or, more generally

x(t) =
ρ

L
x(t− 1) + u(t), u(t) ∈

{

0,
1

L
,
2

L
, ...,

L− 1

L

}d

,

with a scale parameterρ ∈ (0, 1].
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Mapping sequences with contractions

Mapping symbolic sequences into Euclidean space

Coding strategyis Markovian

Sequences with shared histories of recently observed symbols have close
images

The longer is the common suffixof two sequences,the closer are they
mappedto each other
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Cluster structure of IPS - reduced IPS set

Theoutput readout mapy(t) = h(x(t)) is oftensmooth and/or highly
constrained. This imposes the requirement thatIPS leading to the
same/similar output should lie "close" to each other.
Hence, it is natural to look at thecluster structure of IPS

Eachclusterrepresents anabstract IPS

If we wish, we can estimate thetopology/statistics of state
transitions/symbol emissionson such new IPS on the available data and
test them on a hold-out set

Theory and Applications of State Space Models for Time Series Data – a Personal View – p.24/98



Readout from IPS - Prediction Machines (PM)

Reduce complexity of IPS by identifying "higher-level" IPS withclusters
(indexed byi) of IPSx(t)

... 1 2 2 3 2 1 1 1 2

P( . | i )
Cluster IPS

Each cluster i=1,2,...,M

probability distribution

has associated next−symbol

P( . | i )

DS Delay
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Chaotic laser
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Fractal representation through affine dynamics
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Laser - results (NNL on test set)
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Bible
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‘Pure’ state transition formulation

Another possibility is to keep thestate transition formulation without
additional memory mechanism, but allowinfinite number of IFS
(countable, or even uncountable)

E.g. Dynamical recognizersstudied by Pollack, Moore, ...

Accept

Start

Reject

State transitions:

On symbol 1:  x −> F1(x)

On symbol 2:  x −> F2(x)

F1

F2

F1

F1
F2

F2

F2

F2
12122 − grammatical

221 − non−grammatical
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Continuous state space

State transitions over a continuous state spaceX can be considered
iterations of anon-autonomous dynamical systemonX .

Each mapFi : X → X corresponds to distinct input symboli ∈ A.

Having a state space withuncountable number of statescan lead toTuring
(super-Turing) capabilities, but we need infinite precision of computations
(Siegelmann, Moore,...).
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Recurrent Neural Network (Elman)

... 1 2 2 3 2 1 1 1 2

Delay

W

Parametrized DS

Output

Context   C

Recurrent   X

Input   U

W

W

Unit Delay

RI

Output   Y

RCW

OR

Neurons organized in 4 groups: Input (U), Context (C), Recurrent (X) and
Output (Y)

X+C can be considered an“extended” inputto the network

C is an exactcopy of X from the previous time step
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RNN - parametrization

x(t) = f(u(t), c(t)) = f(u(t), x(t− 1))

y(t) = h(x(t))

xi(t) = σ





∑

j

WRI
ij · uj(t) +

∑

j

WRC
ij · xj(t− 1) + TR

i





yi(t) = σ





∑

j

WOR
ij · xj(t) + TO

i





WRI , WRC , WOR andTR, TO are real-valued connection weight matrices
and threshold vectors, respectively
σ is asigmoid activation function, e.g.σ(u) = (1 + exp(−u))−1
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Attractive sets

To latcha piece ofinformation fora potentiallyunbounded number of time
stepswe needattractive sets

Start

Reject

A B

1

2
St

1

2

all strings containg odd number of 2’s

Grammatical:Accept

F1

F1
F1

F1

F1

F1F1

F2

F2
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Information latching problem

1. To latch an important piece of information for future reference we
needto create anattractive set

2. Butderivativesof the state-transition map aresmall in the
neighborhood ofsuch anattractive set

3. Wecannot propagate error informationwhen training RNN via a
gradient-based procedure –derivatives decrease exponentially fast
through time
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Curse of long time spans

As soon as we try to create a mechanism for keeping important bits of
information from the past, we lose the ability to set the parametersto the
appropriate values since the error information gets lost very fast

It is actually quitenon-trivial (although not impossible)to train a
parametrized state space model(e.g. RNN)beyond finite memoryon
non-toy problems
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Informative models form RNN by clustering IPS

A B

1

2
St

1

2

all strings containg odd number of 2’s

Extracted FSM:Accept

Start

Reject

2

2

1

1
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Bit of a shock!

There are good reasons forinitializing RNN with small weights
(indeed it is a common practice)

State-transition maps of RNN
(with commonly used sigmoid activation functions)
prior to training(small weights) arecontractions

Clustering IPSnaturally formsMarkov states:
wegroup togetherneighboring points that are images ofsequences with
shared suffixes

RNN without any training is already great!

Markovian architectural bias of RNN
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It’s all about contractions...

Given an input symbols ∈ A at timet, and activations of recurrent units
from the previous step,x(t− 1),

x(t) = fs(x(t− 1)).

This notation can be extended to sequences overA the recurrent
activations aftert time steps are

x(t) = fs1...st(x(0)).

If mapsfs are contractions with Lip. constant0 < C < 1,

‖fvq(x)− fwq(x)‖ ≤ C |q| · ‖fv(x)− fw(x)‖

≤ C |q| · diam(X ).
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Chaotic laser revisited
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Deep Recursion

Production rules:
R → 1R3, R → 2R4, R → e.

Length Percent in the sequence Examples
2 34.5 % 13, 24

4 20.6% 1243, 1133

6 13.6 % 122443, 211344

8 10.3% 22213444

10,12,14,...20 each length 3.5 % 121212111333434343

Table 1: Distribution of string lengths. Training sequence

– 6156 symbols, test sequence – 6192 symbols
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Deep recursion - results
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Theoretical grounding

Theorem (Hammer & Tǐno):

Recurrent networks with contractive transition function can be
approximated arbitrarily well on input sequences of unbounded
length by a definite memory machine.Conversely,

every definite memory machine can be simulated by a recurrent
network with contractive transition function.

Hence initialization with small weights induces an
architectural bias into learning with recurrent neural networks.
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Learnability (PAC)

Valid also for continuous input/output spaces.

The architectural bias emphasizes one possible region of the weight space
where generalization ability can be formally proved.

Standard RNN are not distribution independent learnable in the PAC sense
if arbitrary precision and inputs are considered.

Theorem (Hammer & Tǐno):

Recurrent networks with contractive transition function with a fixed
contraction parameter fulfill the distribution independent UCED
propertyand so

unlike general recurrent networks, are distribution independent
PAC-learnable.
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Fractal analysis

Complexity of the driving input stream (topological entropy) isdirectly
reflected in the complexity of the state space activations (fractal
dimension).

Theorem (Tǐno & Hammer):
Recurrent activations inside contractive RNN form fractal clustersthe
dimension of which can be bounded by the scaled entropy of the
underlying driving source. The scaling factors are fixed and are given by
the RNN parameters.
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So do we need adaptive hidden state structure?

Hidden states add flexibility, but make training more difficult.

Can represent and track underlying changes in the generative process.

If the number of states is finite
- hidden Markov models
- switching models
- ...
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Finite state set - Hidden Markov Model

Stationary emissions conditional on hidden (unobservable) states.

Hidden states represent basic operating "regimes" of the process.

Bag 2

Bag 3

Bag 1
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Temporal structure - Hidden Markov Model

We haveM bags of balls of different colors (Red - R, Green - G).

We are standing behind a curtain and at each point in time we select a bag
j, draw (with replacement) a ball from it and show the ball to an observer.
Color of the ball shown at timet is C(t) ∈ {R,G}. We do this forT time
steps.

The observer can only see the balls, it has no access to the information
about how we select the bags.

Assume: we select bag at timet based only on our selection at the previous
time stept− 1 (1st-order Markov assumption).
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HMM - probabilistic model
Probabilistic, finite state and observation spaces version of

x(t) = f(x(t− 1)), y(t) = h(x(t)), hence,

p(x(t) | x(t− 1)), p(y(t) | x(t))

alphabet ofA symbols,A = {1, 2, ..., A}.

Consider a set of symbolic sequences,s(n) = (s
(n)
t )t=1:Tn

, n = 1 : N

Assuming independently generated sequences, the likelihood is

L =

N
∏

n=1

p(s(n)),

p(s(n)) =
∑

x∈KTn

p(x1)

Tn
∏

t=2

p(xt|xt−1)

Tn
∏

t=1

p(s
(n)
t |xt)
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Model estimation - if only we knew ...

If we knew which bags were used at which time steps, things wouldbe
very easy!... just counting

Hidden variableszjt :

z
j
t = 1, iff bag j was used at timet;

z
j
t = 0, otherwise.

P (bagj → bagk) =

∑T−1
t=1 z

j
t · z

k
t+1

∑M
q=1

∑T−1
t=1 z

j
t · z

q
t+1

[state transitions]

P (color = c | bagj) =

∑T
t=1 z

j
t · δ(c = C(t))

∑

g∈{R,G}

∑T
t=1 z

j
t · δ(g = C(t))

[emissions]
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But we don’t ...

We need to come up with reasonable estimates of probabilities for hidden
events such as:

z
j
t · z

k
t+1 = 1

at timet we selected bagj and at the next time step we selected bag
k

z
j
t · δ(c = C(t)) = 1

at timet we selected bagj and drew ball of colorc

Again, the probability estimates need to be based on observed dataD and
our current model of state transition and emission probabilities.
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Re-estimate the model

P (zjt · z
k
t+1 = 1 | D, current model) = R

j→k
t

P (zjt · δ(c = C(t)) = 1 | D, current model) = R
j,c
t

Then we can re-estimate the model parameters as follows:

P (bagj → bagk) =

∑T−1
t=1 R

j→k
t

∑M
q=1

∑T−1
t=1 R

j→q
t

[state transitions]

P (color = c | bagj) =

∑T
t=1R

j,c
t

∑

g∈{R,G}

∑T
t=1R

j,g
t

[emissions]
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Estimating values of the hidden variables

In this case we haven’t dealt with the crucial question of how tocompute
the estimation for possible values of hidden variables, giventhe observed
data and current model parameters.

This can be done efficiently - Forward-Backward algorithm.

There is a consistent framework for training any form of latent-variable
model via maximum likelihood:Estimation–Maximization (E-M)
algorithm.
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Learning - can we do better than hand-waving?

Observed data:D

Parameterized model of data itemst: p(t|w)

Log-likelihood ofw: log p(D|w)

Train via Maximum Likelihood:

wML = argmax
w

log p(D|w).
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Complete data log-likelihood

Observed data:D

Unobserved data:Z (realization of compound hidden variableZ)

Log-likelihood ofw: log p(D|w)

Complete data log-likelihood:log p(D,Z|w)

By marginalization:

p(D|w) =
∑

Z

p(D,Z|w)
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Concave function

uu’’

F(u)

u’ au’ + (1−a)u’’

F(au’ + (1−a)u’’)

aF(u’) + (1−a)F(u’’)

0 <= a <= 1

For any concave functionF : R → R and anyu′, u′′ ∈ R, a ∈ [0, 1]:

F (au′ + (1− a)u′′) ≥ aF (u′) + (1− a)F (u′′).

F

(

∑

i

aiui

)

≥
∑

i=1

aiF (ui), ai ≥ 0,
∑

i

ai = 1
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A lower bound on log-likelihood

Pick ‘any’ distributionQ for hidden variableZ.
As usual,Q(Z = Z) will be denoted simply byQ(Z).

log(·) is a concave function and
∑

Z Q(Z) = 1, Q(Z) > 0.

Log-likelihood ofw: log p(D|w)

log p(D|w) = log

(

∑

Z

p(D,Z|w)

)

= log

(

∑

Z

Q(Z)
p(D,Z|w)

Q(Z)

)

≥
∑

Z

Q(Z) log
p(D,Z|w)

Q(Z)
= F(Q,w)
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Maximize the lower bound on log-likelihood

Do ‘coordinate-wise’ ascent onF(Q,w).

F(Q,w)
w

Q
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Maximize F(Q,w) w.r.t. Q (w fixed)

F(Q,w) = −
∑

Z

Q(Z) log
Q(Z)

p(Z|D,w)
+
∑

Z

Q(Z) log p(D|w)

= −DKL[Q(Z)||P (Z|D,w)] + log p(D|w).

Sincelog p(D|w) is constant w.r.t.Q, we only need to maximize
−DKL[Q(Z)||P (Z|D,w)], which is equivalent to minimizing

DKL[Q(Z)||P (Z|D,w)] ≥ 0.

This is achieved whenDKL[Q(Z)||P (Z|D,w)] = 0, i.e. when

Q∗(Z) = P (Z|D,w) and F(Q,w) = log p(D|w).

Exact click, no longer a lose lower bound!
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E-Step

We have:
Q∗(Z) = P (Z|D,w).

Theoptimal way for guessingthevalues of hidden variablesZ is toset the
distribution ofZ to the posterior overZ, given the observed dataD and
current parameter settingsw.

Estimation of the posteriorP (Z|D,w) is done in the E-Step of the E-M

algorithm.
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Maximize F(Q,w) w.r.t. w (Q is fixed toQ∗)

F(Q∗,w) = −
∑

Z

Q∗(Z) log p(D,Z|w)−
∑

Z

Q∗(Z) logQ∗(Z)

= EQ∗(Z)[log p(D,Z|w)] +H(Q∗).

Since the entropy ofQ∗, H(Q∗), is constant (Q∗ is fixed), we only need to
maximizeEQ∗(Z)[log p(D, Z|w)]:

w∗ = argmax
w

EQ∗(Z)[log p(D, Z|w)].
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M-Step

We have:
w∗ = argmax

w
EQ∗(Z)[log p(D, Z|w)].

Theoptimal way for estimating the parametersw is to select the parameter
valuesw∗ thatmaximize the expected value of the complete data
log-likelihoodp(D,Z|w), where theexpectationis takenw.r.t. the
posterior distribution over the hidden dataZ, P (Z|D,w).

Find a single parameter vectorw∗ for all hidden variable settingsZ (since
we don’t know the true values ofZ), but while doing this,weight the
importance of each particular settingZ by the posterior probability
P (Z|D,w).
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E-M Algorithm

Given the current parameter settingwold do:

E-Step:

EstimateP (Z|D,wold), the posterior distribution overZ, given the
observed dataD and current parameter settingswold.

M-Step:
Obtain new parameter valueswnew by maximizing

EP (Z|D,wold)[log p(D, Z|w)].

Setwold := wnew and go to E-Step.
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General Probabilistic State Space Modeling

Introduction

Autoregressive models

Linear state space models

Dynamical systems

Non-linear state-space models
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Definition

A state space model consists of an unobserved state sequence
Xt ∈ X , with time indext = 0, 1, 2, ..., and an obserevation sequence
Yt ∈ Y, with t = 1, 2, ...;

State spacesX andY are either open or compact subsets of an
Euclidean space;

The state sequenceX0, X1, X2, ... is a Markov chain;

Conditionally on{X0,X1, ...}, theYt’s are independent and
Yt depends onXt only;

Graphical representation:

yt

xt

y
t−1

x
t−1

y
t+1

x
t+1
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Definition (cont.)

Conditional independence. For example, givenXt, Xt+1 andYt are
independent with each other;

The observations could include both input variables,Ut ∈ U , and
output variables,Yt ∈ Y;

As input variables,Ut are usually observed without noise corruption;

Graphical representation:

ut−1 ut
ut+1

yt

xt

yt−1 yt+1

xt−1
xt+1
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Probabilistic Modelling

Initial state densityX0 ∼ a0(x);

State transition densities

Xt|(xt−1,ut) ∼ at(x,xt−1,ut);

Observation densities

Yt|(xt,ut) ∼ bt(y,xt,ut).

The joint density of (X0:t, U1:t, Y1:t) is given by

p(x0:t,u1:t,y1:t) = a0(x0)

t
∏

s=1

as(xs,us,xs−1)bs(ys,xs,us).
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Probabilistic Modelling (cont.)

The joint density factorizes into a product of terms containing only
pairs of variables−→
The joint process (Xt, Yt) is also Markovian;

The observationsYt alone are not Markovian−→
The dependence structure ofYt could be more complicated than for
a Markov process;

The conditional densityp(x0:t|y1:t) is proportional to the joint
densityp(x0:t,y1:t) −→
Conditionally onY1:t = y1:t, the state variables are still Markovian
(so-called conditional Markov process);

Densitiesp(xt|y1:t) store all information about the conditional
Markov process up to timet.

The IPS are densitiesover the state spaceX !!!
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Statistical Inference

The main tasks we need to solve are

1. Inference about statesxs based ona stretch ofobserved valuesyq:t

for a given model (i.e.at andbt known);

2. Inference about unknown parametersin at andbt.

Inference aboutXs giveny1:t is called

1. predictionif s > t,

2. filtering if s = t,

3. smoothingif s < t.

Theory and Applications of State Space Models for Time Series Data – a Personal View – p.69/98



Autoregressive Models

Autoregressive models for univariate time seriesy1, y2, ...:

Autoregressive (AR) models;

Autoregressive-moving average (ARMA) models

Autoregressive-moving average with exogenous terms (ARMAX)
models
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AR Models

The model:yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + wt

whereφ1, φ2, ...,φp are constants andwt is a Gaussian noise series
with mean zero and varianceσ2

w;

Definext = (xt, xt−1, ..., xt−p+1)
⊺;

Definewt = (wt, 0, ..., 0)
⊺ andH = (1, 0, ..., 0);

The state equation:xt+1 = Fxt +wt with

F =











φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0
...

...
...

...
...

0 · · · 0 1 0











∈ Rp×p

The observation equation:yt = Hxt

The state evolution is ‘contaminated’ by noise!
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ARMA Models
Consider the univariate ARMA(2, 1) models:

yt = φ1yt−1 + φ2yt−2 + θwt−1 + wt.

whereφ1, φ2, andθ are constant, andwts are Gaussian noise with
zero mean and varianceσ2

w

Definext = (xt, xt−1)
⊺;

State equation:xt =

(

φ1 1

φ2 0

)

xt−1 + wt

(

1

θ

)

;

DefineH = (1, 0) → Observation equation:yt = Hxt;

Verification

xt = φ1xt−1 + xt−2 + wt

xt−1 = φ2xt−1 + θwt

xt−2 = φ2xt−2 + θwt−1

xt = φ1xt−1 + φ2xt−2 + θwt−1 + wtTheory and Applications of State Space Models for Time Series Data – a Personal View – p.72/98



ARMAX model

An univariate ARMAX(p, q) model (p > q):

yt = Γut +

p
∑

j=1

φjyt−j +

q
∑

j=1

θjwt−j + wt

State equation:

xt+1 =















φ1 1 0 · · · 0

φ2 0 1 · · · 0
...

...
...

...
...

φp−1 0 0 · · · 1

φp 0 0 · · · 0















xt +





















1

θ1
...
θq
0
...





















wt +



















Γ

0

0
...
0

0



















ut

Observation equation:yt = (1, 0, 0, ..., 0)xt
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Linear State Space Model

Definition

Kalman Filtering

Kalman Smoothing

Parameter Estimation

Examples
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Definition

Linear-Gaussian assumption:

a0(x) = N (x;µ0,Σ0)

at(x,ut,xt−1) = N (x;Fxt−1 +Υut,Σ)

bt(y,ut,xt) = N (y;Hxt + Γut,R)

wherext andµ0 arep× 1 vector,yt areq × 1 vector,ut arer × 1 vector,
F, Σ0 andΣ arep× p matrix,R areq × q matrix,H areq × p matrix„ Υ0

andΓ arep× r matrix.

x0 = µ0 +w0; w0 ∼ N (w0; 0,Σ0)

xt = Fxt−1 +Υut +wt; wt ∼ N (wt; 0,Σ)

yt = Hxt + Γut + vt; vt ∼ N (vt; 0,R)
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Kalman Filtering

Recall that the conditional densitiesp(xt|y1:t) do store all
information about the state space model up to timet −→

p(xt|y1:t) = N (xt;mt|t,Pt|t);

At t = 0, mt|t = µ0 andPt|t = Σ0;

At time t, predictive mean and covariance matrix:

mt|t−1 = E [xt|y1:t−1]

= E [Fxt−1 +Υut +wt|y1:t−1]

= Fmt−1|t−1 +Υut

Pt|t−1 = E
[

(xt −mt|t−1)(xt −mt|t−1)
⊺
]

= E
[

[F(xt−1 −mt|t−1) +wt][F(xt−1 −mt|t−1) +wt]
⊺
]

= FPt−1|t−1F
⊺ +Σ
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Conditional Gaussians

If µ andΣ are partitioned as follows:

µ =

[

µ1

µ2

]

and

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

The distribution ofx1 conditional onx2 = a:
mean vector

µ̄ = µ1 +Σ12Σ
−1
22 (a− µ2)

and covariance matrix

Σ = Σ11 −Σ12Σ
−1
22 Σ21.
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Kalman Filtering (cont.)

The innovations:

ǫt = yt − E [yt|y1:t−1] = yt − Γut −Hmt|t−1

Conditional onǫt, the conditional GaussianN (xt;mt|t,Pt|t) can be
derived from the joint GaussianN (xt, ǫt;mxt,ǫt ,Pxt,ǫt);

E [ǫt] = 0;

var(ǫt) = HPt|t−1H
⊺ +R;

cov(xt, ǫt|y1:t) = Pt|t−1H
⊺;

mt|t = mt|t−1 +Ktǫt

Pt|t = Pt|t−1 −KtHPt|t−1

The Kalman gain:Kt = (cov(xt, ǫt|y1:t)) · (var(ǫt))−1.
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Kalman Filtering (cont.)

Interpretation ofKt:
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Kalman Smoothing

Given the observation sequence{y1, ...,yT }:

p(xt|y1:T ) = N (xt;mt|T ,Pt|T );

The conditional meansmt−1|T andmt|T are those values that
maximize the joint Gaussian densityp(xt−1,xt|y1:T );

The conditional joint densityp(xt−1,xt|y1:T ) has the forms

p(xt−1,xt|y1:T ) ∝ p(xt−1|y1:t−1) · p(xt|xt−1);

Suppose we havemt|T avaiable, themt−1|T is found by maximizing

N (xt−1;mt−1|t−1,Pt−1|t−1) · N (mt|T ;Fxt−1,Σ);
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Kalman Smoothing(cont.)

mt−1|T = mt−1|t−1 + Jt−1(mt|T −mt|t−1);

Pt−1|T = Pt−1|t−1 + Jt−1(Pt|T −Pt|t−1)J
⊺

t−1;

Jt−1 = Pt−1|t−1F
⊺
(

Pt|t−1

)−1
;

Interpretation ofJt−1:
Recall thatPt|t−1 = FPt−1|t−1F

⊺ +Σ;

Note thatJt−1 = 1, if F is a identity matrix andΣ = 0.

There are many equivalent forms of the smoother in the literature. They

differ numerically with respect to speed and accuracy.
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Parameter Estimation

The parameter set to estimate isθ = {F,Σ,R};

The incomplete data likelihood

−2 logLY(Θ) =

T
∑

t=1

log |var(ǫt(Θ))|+
T
∑

t=1

ǫt(Θ)⊺var(ǫt(Θ))−1ǫt(Θ));

The complete data likelihood

−2 logLX,Y(Θ) = log |Σ0|+ (x0 − µ0)
⊺Σ−1

0 (x0 − µ0)

+ log |Σ|+
T
∑

t=1

(xt − Fxt−1)
⊺Σ−1(xt − Fxt−1)

+ log |R|+
T
∑

t=1

(yt −Hxt)
⊺Σ−1(yt −Hxt);

Theory and Applications of State Space Models for Time Series Data – a Personal View – p.82/98



Parameter Estimation (cont.)

TheQ function at iterationj

Q
(

Θ|Θ(j−1)
)

= E

[

−2 logLX,Y(Θ)|y1,...,T ,Θ
(j−1)

]

,

which is an upper bound onlogLY(Θ);

The algorithm

1. InitializeΘ(0) and setj = 1;

2. ComputelogLY(Θ(j−1));

3. (E-Step) Perform Kalman filtering and smoothing usingΘ(j−1);
4. (M-step) Use the smoothed estimates (mt|T , Pt|T , ...) to

computeΘ(j) that maximizesQ
(

Θ|Θ(j−1)
)

;

5. Repeat Steps 2 - 4 forlogLY(Θ(j−1)) to converge.
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Example

xt = φxt−1 + wt

yt = xt + wt,

with φ = 0.8,σ2
w = 1.0, andσ2

v = 1.0.

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

Time

 

 
state
data

Theory and Applications of State Space Models for Time Series Data – a Personal View – p.84/98



Example (cont.)
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Example (cont.)
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Non-linear state space models

Extended Kalman filtering

Non-linear filtering

Non-linear smoothing

Parameter estimation

Example
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Extended Kalman filtering

Nonlinear state equation:

Xt = F(Xt−1) +Wt and Yt = HXt +Vt

Linearization:

Xt = Ft(Xt−1) ≈ Ft(mt−1|t−1)+

[

dF(Xt)

dXt

]

mt−1|t−1

(Xt−1−mt−1|t−1).

Prediction:
mt|t−1 = F(mt−1|t−1)

Pt|t−1 =

[

dF(Xt)

dXt

]

mt−1|t−1

Pt−1|t−1

[

dF(Xt)

dXt

]

⊺

mt−1|t−1

+Σ
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Extended Kalman filtering (cont.)

Problems:

Conditional densities are assumed to be Gaussian;
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No information about approximation error
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Extended Kalman filtering (cont.)

Particle approximation ofp(x)

DrawN samples fromp(x): {x1, x2, ..., xN};

Approximatep(x) by p̃(x) ≈ 1
N

∑N
k=1 δ(x− xk);

Capability of approximating multimodal distribution;

WhenN → ∞, p̃(x) → p(x).

If a direct draw is impossible, Markov Chain Monte Carlo or
Sequential Monte Carlo.
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Non-linear filtering

filtering densities:ft|t(xt) = p(xt|y1:t);

prediction densities for state:ft+1|t(xt+1) = p(xt+1|y1:t);

filtering: ft|t −→ ft+1|t −→ ft+1|t+1;

Markov transition:ft+1|t(xt+1) =
∫

at(xt+1,x)ft|t(x)dx

Bayes’ formula:p(x|y) = p(y|x)·p(x)∫
p(y|x)·p(x)dx

−→

ft+1|t+1(xt+1) =
bt(yt+1,xt+1)ft+1|t(xt+1)
∫

bt(yt+1,x)ft+1|t(x)dx
.

prediction densities for observation:

pt+1|t(yt+1|y1:t) =

∫

bt(yt+1,x)ft+1|t(x)dx;
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Non-linear filtering (cont.)

The standard particle filtering

1. Generate(x10, ...., x
N
0 ) from a0(x) and sett = 0;

2. We have(x1t , ...., x
N
t ) for an particle approximation offt|t(xt);

3. Generatẽxjt+1 ∼ at+1(x
j
t , x), j = 1, ...,N , to obtain an particle

approximation offt+1|t(xt+1);

4. Compute weightsλj
t+1 =

bt+1(x̃
j

t+1,yt+1)∑
k
bt+1(x̃k

t+1,yt+1)
;

5. GenerateIj with p[Ij = k] = λ
j
t+1 and setxjt+1 to x̃

Ij
t+1;

6. Increaset by 1 and go back to Step 2.
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Nonlinear Filtering (cont.)
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Nonlinear smoothing

yt

xt

y
t−1

x
t−1

y
t+1

x
t+1

Bayes’ formula

p(xt|xt+1,y1:T ) = p(xt|xt+1,y1:t) =
at+1(xt,xt+1)ft|t(xt|y1:t)

ft+1|t(xt+1|y1:t)

Markov transition

p(xt|y1:T ) =

∫

p(xt|xt+1,y1:T ) · p(xt+1|y1:T )dxt+1.
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Nonlinear smoothing (cont.)

Smoothing densities:

ft|T (xt) = ft|t(xt)

∫

at+1(xt,x)

ft+1|t(x)
· ft+1|T (x)dx.

a
0

f
1|1 ... f

t|t
f
t+1|t+1 ... f

T|T

f
1|0

f
t|t−1

f
t+1|t

f
T|T−1

p(x
1
|x

2
,y

1
T) p(x

t
|x

t+1
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1
T)

f
1|T
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t|T

f
t+1|T

f
T|T

M
B

M M M

M M M

B B

B
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Non-linear smoothing (cont.)

We have(x1
t|t, ...., x

N
t|t) for t = 1, ...,T representing filtering densities

ft|t(xt).To generatexj
t|T givenxj

t+1|T , we sample from

gt(x) ∝ at+1(x, x
j

t+1|T )ft|t(x|y1:t)

∝ at+1(x, x
j

t+1|T ) ·

{

bt(x, yt)

N
∑

i=1

at(x
i
t|t, x)

}

,

using accept reject method, with the index as auxiliary variable;

1. GenerateI uniform on{1, ..., N} andx from a(xI
t−1|t−1, x);

2. GenerateU uniform on[0, cjt ]. If U < bt(x, yt)at+1(x, x
j

t+1|T ),

putxj
t|T = x.
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Parameter estimation

Assume now that bothat andbt depende on a finite dimensional parameter
Θ. The the likelihood ofΘ given the observed seriesy1:T

p(y1:T |θ) =
T
∏

t=1

p(yt|y1:t−1;Θ) =

T
∏

t=1

∫

bt(x, yt; Θ)ft|t−1(x|y1:t−1; Θ)dx.

Each factor on the right is obtained as a normalization during thefilter
recursion.

∫

bt(x, yt; Θ)ft|t−1(x|y1:t−1; Θ)dx =
1

N

N
∑

j=1

bt(x
j

t|t−1, yt)

Maximization can be done by a general purpose optimization algorithm.
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Parameter estimation(cont.)

Since the joint likelihood of the observations and the hiddenstates can be
written explicitly, using the EM algorithm is natural.In the E-step, we have
to compute

Q(Θ,Θ′) = E
[

log p(x0:T , y1:T ; Θ|y1:T ,Θ
′
]

whereΘ′ is the current approximation to the MLE. In the M-step, we
maximizeQ(Θ,Θ′) with respect toΘ. The functionQ(Θ,Θ′) contains the
terms

E
[

log at(xt−1, xt; Θ)|y1:T ,Θ
′
]

and E
[

log bt(xt, yt; Θ)|y1:T ,Θ
′
]

,

which can be computed by using smoothed particlex
j

t|T , j = 1, ...,N .
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