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Dynamical processes

Imagine a "box" inside which dynamic proces@.e. things change in
time) takes place. At timg the"state of the system$ x(t) € X.

Thedynamicscan beautonomouge.g. "happens by itself"), or
non-autonomouge.g. driven by external input).

X(t) = f(X(t =1)), x(t) = f(u(t),x(t—1))

Thedynamicscan becontinuous timge.g. time is taken as a continuous
entity - dynamics can be described e.g. by differential eqoajjar
discrete timge.g. changes happen in discrete time steps- can be describec

e.g. by iterative maps).
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Dynamical processes - cont'd

Thedynamicscan bestationary(e.g. the law governing the dynamics is
fixed and not allowed to change), mon-stationarye.g. the manner in
which things change is itself changing in time).

X(t) = fix(t = 1)), X(t) = fi(u(t),x(t — 1))

dXx(t) dXx(t)

— = fr(X(1)), T fe(u(?), x(t))

Thedynamicscan bedeterministiqas above), ostochastide.g. corrupted
by some form of dynamic noise). One now must work with full
distributions over possible "statesf the system!

pX(t) [ X(t = 1)), p(x(¢) [u(t),x(t —1))
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Observing dynamical processes

We can have éelescope'with which to observe the "box" inside which a
dynamic process is happening, e.g. we can have access to some
coordinates of the dynamics, or some otresxdout functiorfrom them.

We will call such observed entitiedservations

y(t) = h(x(t)), y(t)=h(u(t),x(t))

Reading out of the observations can be corrupted bytaservational

noise In this case we are uncertain about the value of observationsaamd
only havedistributions over possible observations

p(y(t) [ x(®)), p(y(t) | u(t),x(t))
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State space model - state and state transition

We impose that thdynamic process we are observing is governed by a
dynamic law prescribing how the state of the system evolvasmia.{lhe
state captures all that we need to know about the past in ordestyibe
future evolution of the system.

X(t) = f(x(t =1)), x(t) = f(u(t),x(t - 1))

dx(t) B
2= (@), S = Fu(),x(®)

p(X(t) [ X(t =1)), p(x(¢) [u(t),x(t —1))
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State space model - readout from states

We can haveaccess to the dynamics through some function of the states
producing observations

y(t) = h(x(t)), Yy(t) = h(u(t),x(t))
p(y(t) [ x(t)), p(y(t) [ u(t),x(t))

It can be possible to "recover" the states (in some sense- e.g. up't

topological conjugacy) from the observation®bservable statesor not -
"unobservable states"
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| only have observations...

In many cases we only have access to observations from the umggerlyi
dynamics and perhaps also to the driving input stream.

In oder to"generalize beyond the observatiomg must somehowapture
the law describing how the underlying dynamics evolves in time

In some cases we have a deep theory underpinning such generalizat
processes. For example, fdeterministic autonomous dynamics observed
through a noiseless coordinate-projection readeathavelaken’s
Theoremguaranteeing (under some rather mild conditions) recovery of the
original dynamic law and its attractor (up to topological caggay).

Many "input time-lag window" (finite input memory) approacheage their
Inspiration from Taken’s Theorem. The situation can get much more
complicated once dynamic (and/or observational) noise isidered.
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Focus of principles, discrete case

m a finitealphabeof abstract symbolsl = {1,2, ..., A}

W possibly infinitestringsover A

W left-to-right processin@f strings
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Making sense of time series

"the environment"

hmmm, how
can | make some
sense out of this...

modelling
prediction
classification
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Left-to-right processing of sequences

One can attempt to reduce complexity of the processing task

group together histories of symbols that have “the same fumality”
w.r.t. the given taske.g. next-symbol prediction)

Information processing stat@$S)are equivalence classes over sequences

IPS code what is important in everything we have seen in the past
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IPS - discrete state space, Inputs, observations

A simplesequence classificati@xample +SA

IPS -1, 2

Inputs -a, b

outputs - 2 "Grammatical": odd number of b’s, 1 "Non-Grammdtica
even number of b’s (including none)

a

b
a

L™
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IPS - a simple example - transducer

translate input streams ovéd, b} to sequences ovérr, y }
IPS -1,2

Inputs -a, b

outputs -z, y

a|x
bly

i

b|Xx
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IPS - the simplest case - finite time lag

The simplest construction of IPS is basedocomcentrating othe very
recent (finite) past

e.g. definite memory machines, finite memory machines, Markaletso

Example:

Only the last input symbols matter when reasoning about what symbol
comes next

..121123212123211
..211113444423211
..332212122143211

All three sequences belong to the same IR$21T
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Probabilistic framework - Markov model (MM)

What comes next?

..121123212123211|7
..2111134444283211|7
...332212122133211|7

finite context-conditional next-symbol distributions
P(s|11111)
s| 11112
s| 11113

s€{1,2,3,4)
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Difficult times...

but, who
IS going to pay
for all this?

difficult times, pay for
necessary things only!
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Markov model

MM are intuitive and simple, but ...

Number of IPYprediction contextsyjrows exponentially fast with
memory length

Large alphabets and long memories are infeasible:

computationally demanding and

very long sequences are needed to obtain sound statisticabeest
of free parameters
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Variable memory length MM (VLMM)

Sophisticated implementation of potentially high-order MM

Takes advantage of subsequence structure in data

Saves resources lmyaking memory depth context dependent

Usedeep memory only when it is needed

Natural representation of IPS in form Bfediction Suffix Trees

Closely linked to the idea afniversal simulation of information sources
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Prediction suffix tree (PST)

IFS are organized on nodes of PST

Traverse the tree from root towards leaves in reversed order
Complex and potentially time-consuming training

Each node i
has associated next—symbol

probability distribution
2 P(.] 1)

. >
time
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Continuous state space, discrete inputs/outputs

{ Output ]

? P ~ | Delay

Parametrized DS /
W -«

...122321112j

States of the D%orm IPS: x(t) = f(u(t),x(t — 1); w)

These statesode the entire history of symbolge have seen so far
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The power of contractive DS

3 i 4 3 *1 4
contract . l
\ contract
1 2 2
E
F: }%/ Eﬁ _contract
2 1 2
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Affine input-driven dynamics

X(t) = fu(®),x(t-1))
= p Xt =1+ —=p)-u@®).

or, more generally

d
X(t) = 2x(t— 1)+ u(t), u(t) & {OiZLL_l} |

with a scale parametere (0, 1].
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Mapping sequences with contractions

Mapping symbolic sequences into Euclidean space
Coding strategys Markovian

Seqguences with shared histories of recently observed symbasclase
Images

The longer is the common suffof two sequenceshe closer are they
mappedo each other
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Cluster structure of IPS - reduced IPS set

Theoutput readout map(t) = h(x(t)) is oftensmooth and/or highly
constrainedThis imposes the requirement that leading to the
same/similar output should lie "close" to each other.

Hence, it is natural to look at thetuster structure of IPS

Eachclusterrepresents aabstract IPS

If we wish, we can estimate tiiepology/statistics of state

transitions/symbol emissiomh such new IPS on the available data and
test them on a hold-out set
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Readout from IPS - Prediction Machines (PM)

Reduce complexity of IPS by identifying "higher-level" IPS waluisters
(indexed by:) of IPSXx(t)

Each cluster i=1,2,....M
has associated next—symbol
probability distribution

PC.11)

Cluster IPS

7

DS 1 Delay
/

...122321112j
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Chaotic laser

Laser activity Histogram of activity diff
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Training sequence: 8000 symbols
Test sequence: 2000 symbols
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Fractal representation through affine dynamics

CBR of Laser data
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Laser - results (NNL on test set)

NNL of FPMs and MMs on Laser data

NNL

NNL of PSTs on Laser data

NNL
o
&

—% PST(10)
|| = PST(50)
021 1 psT(100)

0 1 2 3
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Bible

NNL of MMs, FPMs and PST on a test text from Genesis
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Training sequence: Old Testament - Genesis
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‘Pure’ state transition formulation

Another possibility is to keep th&ate transition formulation without
additional memory mechanisrut allowinfinite number of IFS
(countable, or even uncountable)

E.g. Dynamical recognizerstudied by Pollack, Moore, ...

Start F2 F2 e h
/7” State transitions:
= On symbol 1. x —> F1(x)
On symbol 2: x —> F2(x)
F2
S J
F1
12122 — grammatical
F2
Fo 221 - non—grammatical
Reject
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Continuous state space

State transitions over a continuous state spa@an be considered
iterations of anon-autonomous dynamical system.X’.

Each mapF; : X — X corresponds to distinct input symho& A.

Having a state space witincountable number of statean lead toluring
(super-Turing) capabilitiedut we need infinite precision of computations
(Siegelmann, Moore,...).
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Recurrent Neural Network (Elman)

[ Output ]

T‘ [ Output Y ]
/:— ~\\Delay WOR

\ -
! < DR Unit Delay
Parametrized DS /' Recurrent X
W -« - WRC
122321112j '”pUt U Context C

Neurons organized in 4 groups: Input)( Context C), RecurrentX) and
Output (Y)

X+C can be considered aaxtended” inputo the network

C Is an exactopy of X from the previous time step
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RNN - parametrization

&
.
~~

Ny
~—~

I

o (Z WH ZWRC (t—1) +TR>

yi(t) = (Z Wit +TO)

WL WEC WOR gndTH, TC are real-valued connection weight matrices
and threshold vectors, respectively

o is asigmoid activation functiore.g.o(u) = (1 + exp(—u))~*
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Attractive sets

To latcha piece ofinformation fora potentiallyunbounded number of time
stepswe needhattractive sets

St
O

Grammatical:
all strings containg odd number of 2’s
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Information latching problem

1. To latch an important piece of information for future reference we
needto create amttractive set

2. Butderivativesof the state-transition map asenall in the
neighborhood ofuch amttractive set

3. Wecannot propagate error informatiarien training RNN via a

gradient-based proceduralerivatives decrease exponentially fast
through time
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Curse of long time spans

As soon as we try to create a mechanism for keeping importantfbits o
iInformation from the past, we lose the ability to set the paramébeise
appropriate values since the error information gets lost very fast

It is actually quitenon-trivial (although not impossiblép train a

parametrized state space mo(eg. RNN)beyond finite memorgn
non-toy problems
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Informative models form RNN by clustering IPS

St
0

{Extracted FSM: }

all strings containg odd number of 2’s
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Bit of a shock!

There are good reasons fartializing RNN with small weights
(indeed it is a common practice)

State-transition maps of RNN
(with commonly used sigmoid activation functions)
prior to training(small weights) areontractions

Clustering IPSaturally formsMarkov states:

we group togetheneighboring points that are imagesssquences with
shared suffixes

RNN without any training is already great!

Markovian architectural bias of RNN
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It's all about contractions...

Given an input symbat € A at timet, and activations of recurrent units
from the previous step(t — 1),

X(t) = fs(x(t = 1)).

This notation can be extended to sequences dvitie recurrent
activations aftet time steps are

X(t) = fs...5.(X(0)).

If maps f, are contractions with Lip. constatit< C' < 1,

ClU | fo(x) = fuwX)]|
Clal . diam(X).

1fuq(X) = fug(X)]

IA

A\
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Chaotic laser revisited

NNL
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(c) RTRL - NPM on laser - 16 recurrent neurons

(b) RNN output on laser
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(d) EKF - NPM on laser - 16 recurrent neurons
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Deep Recursion

Production rules:
R—1R3, R— 2R4, R — e.

Length Percent in the sequence Examples
2 34.5 % 13,24
4 20.6% 1243,1133
6 13.6 % 122443, 211344
8 10.3% 22213444
10,12,14,...20 each length 3.5 % 121212111333434343

Table 1: Distribution of string lengths. Training sequence
— 6156 symbols, test sequence — 6192 symbols
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Deep recursion - results

(a) Markov models on context-free language (b) RNN output on context-free language
1.00 ‘ ‘ ‘ ‘ 1.00
0.95 | 0.95 £ REE'; ””””” -
0.90 0.90 T
085 0.85 | Try
0.80 |- 0.80 | b N
L, 075 ¢ L, 075 ¢ T
Z 070 Z 070 i X
0.65 | 0.65 ik 1
0.60 - 0.60 p PR -
0.50 b 0.50 R
0.45 b 0.45
0.40 ‘ ‘ ‘ ‘ 0.40 ‘ ‘
5 10 20 50 100 300 1 10 100 1000
# contexts Epoch
(c) RTRL - NPM on CFL - 16 recurrent neurons (d) EKF - NPM on CFL - 16 recurrent neurons
NNL
1.0
09
0.8 f
0.7
0.6 |
05} 5
0.4 L 10
0

50
100 #contexts
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Theoretical grounding

Theorem (Hammer & Tio):

Recurrent networks with contractive transition function can be
approximated arbitrarily well on input sequences of unbounded

length by a definite memory machin€onversely,

every definite memory machine can be simulated by a recurrent
network with contractive transition function.

Hence initialization with small weights induces an
architectural bias into learning with recurrent neural networks
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Learnabllity (PAC)

Valid also for continuous input/output spaces.

The architectural bias emphasizes one possible region of tlightvapace
where generalization ability can be formally proved.

Standard RNN are not distribution independent learnable inAkkdense
If arbitrary precision and inputs are considered.

Theorem (Hammer & To):

Recurrent networks with contractive transition function with adix
contraction parameter fulfill the distribution independent UCED
propertyand so

unlike general recurrent networks, are distribution independent
PAC-learnable.
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Fractal analysis

Complexity of the driving input stream (topological entropydlisectly
reflected in the complexity of the state space activations élact
dimension).

Theorem (Tino & Hammer):

Recurrent activations inside contractive RNN form fractal cludtezs
dimension of which can be bounded by the scaled entropy of the
underlying driving source. The scaling factors are fixed and arendnye
the RNN parameters.
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So do we need adaptive hidden state structure?

Hidden states add flexibility, but make training more difficult

Can represent and track underlying changes in the generativesproce

If the number of states is finite
- hidden Markov models
- switching models
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Finite state set - HiIdden Markov Model

Stationary emissions conditional on hidden (unobservaldd st
Hidden states represent basic operating "regimes" of the process

¢ f

/ oo 3\
/ “
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Temporal structure - Hidden Markov Model

We haveM bags of balls of different colors (Red - R, Green - G).

We are standing behind a curtain and at each point in time wetselmag
7, draw (with replacement) a ball from it and show the ball to an oleserv

Color of the ball shown at timeis C(t) € { R, G}. We do this forl" time
steps.

The observer can only see the balls, it has no access to the irtfonma
about how we select the bags.

Assume: we select bag at timéased only on our selection at the previous
time stept — 1 (1st-order Markov assumption).
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HMM - probabillistic model

Probabilistic, finite state and observation spaces version of
X(t) = f(x(t = 1)), y(t) =h(x(?)), hence,

p(X(2) [ x(t = 1)), p(y(t) | x(2))

alphabet ofA symbols,. 4 = {1,2, ..., A}.

Consider a set of symbolic sequence#®), = (s§”>)t:1:Tn, n=1:N
Assuming independently generated sequences, the likeliisoo

L= H p(s(n))’

n=1

S(n) Z p(x1) HP Tt|Te—1 HP St ’«Tt

XeK™Tn
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Model estimation - if only we knew ...

If we knew which bags were used at which time steps, things woeild
very easyl!... just counting

Hidden variables:
z/ = 1, iff bag j was used at timé
z/ = 0, otherwise.

-1 _7  _k
zi -2 .
P(bag; — bagy) = (=1 = jt“ [state transitions]
Zq 1 Zt 1 ~t Zt—l—l
L 2 6(e=C(t
P(color = c | bag;) = =17 0l (t) [emissions]

> gerran 2ot 2 - 0(g = C(1))
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But we don't ...

We need to come up with reasonable estimates of probabilitiesdden
events such as:

j k
Rt R4l —

at timet we selected bag and at the next time step we selected bag
k

2 Sle=C(t) =1
at timet we selected bag and drew ball of color:

Again, the probability estimates need to be based on obseata@®dcnd
our current model of state transition and emission probakslitie
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Re-estimate the model

P(z] - zf,, = 1| D, current model = R{%k

P(z -6(c = C(t)) = 1| D, current model = R/*

Then we can re-estimate the model parameters as follows:

T—1 pj—k
t=1 Rt

P(bag; — bagy) = —7 —7—7
Zqzl ZtZI Rg_ﬂ]

[state transitions]

T ,C
2 =1 I
T B
ZgE{R,G} thl Ri /

P(color = c | bag;) = [emissions]
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Estimating values of the hidden variables

In this case we haven’t dealt with the crucial guestion of howimpute
the estimation for possible values of hidden variables, gikerobserved
data and current model parameters.

This can be done efficiently - Forward-Backward algorithm.

There is a consistent framework for training any form of latent-variable
model via maximum likelihoodEstimation—Maximization (E-M)
algorithm
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Learning - can we do better than hand-waving?

Observed datab

Parameterized model of data item$(t|w)
Log-likelihood ofw: log p(D|w)

Train via Maximum Likelihood:

Wy, = argmax log p(D|w).
w
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Complete data log-likelihood

Observed dateb

Unobserved dataZ (realization of compound hidden varialig
Log-likelihood ofw: log p(D|w)

Complete data log-likelihoodog p(D, Z|w)

By marginalization:

p(DIw) = > p(D, Z|w)
zZ
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Concave function

A
F(au' + (1-a)u”)
e
_______ aF(u) + (1- a)F(u D)
u au’ + (1-a)u” u” u

For any concave functiof' : R — R and anyu’, " € R, a € [0, 1]:

Flau' + (1 —a)u”) > aF(u) + (1 —a)F(u").

F <Z aiui> Z ZaiF(ui), a; Z O, Zai =1
1 1=1 1
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A lower bound on log-likelihood

Pick ‘any’ distribution( for hidden variableZ.
As usual,Q(Z = Z) will be denoted simply by) (Z).

log(-) is a concave function angl - Q(Z) =1, Q(Z) > 0.

Log-likelihood ofw: log p(D|w)

log p(D|w)

log (Z p(D,Z|W)>
— log (ZQ p(D, Z|)W)>

Yoz Jog 222 _ 7 w)

IV
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Maximize the lower bound on log-likelihood

Do ‘coordinate-wise’ ascent Qi (@, w).
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Maximize F(Q,w) w.r.t. () (w fixed)

_ Q(2)
F(@Qw) = —%jQ(Z)logp(Z,D?W)+§ZjQ<Z>logp<D|w>

= —DxilQ(2)|[P(ZD,w)] + log p(Dw).

Sincelog p(D|w) is constant w.r.t(), we only need to maximize
—Dg1|Q(Z)||P(Z|D,w)], which is equivalent to minimizing

DgL|Q(Z)||P(Z]D,w)| > 0.
This is achieved wheW g1 |Q(Z2)||P(Z|D,w)] = 0, i.e. when

Q.(Z)=P(Z|D,w) and F(Q,w)=logp(Dlw).

Exact click, no longer a lose lower bound!
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E-Step

We have:
Q«(Z) = P(Z|D,w).

Theoptimal way for guessinthevalues of hidden variables is to set the
distribution of Z to the posterior oveg, given the observed dafaand
current parameter settings

Estimation of the posterioP(Z|D,w) is done in the E-Step of the E-M

algorithm.
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Maximize F(Q,w) w.rt. w (Q is fixedto@,)

F(QuW) = =) Qu(2)logp(D,ZIw) — > Qu(2)log Qu(Z)
Z

Z
— EQ (2) log p(D, Z|w)] + H(Q«).

Since the entropy of).., H(Q.), is constant@, is fixed), we only need to
maximizeEq 7 |log p(D, Z|w)):

W, = argmax Eg_(z)[log p(D, Z|w)].
W
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M-Step

We have:

W, = argmax Eg_(z)[log p(D, Z|w)].
W

Theoptimal way for estimating the parameterss to select the parameter
valuesw, thatmaximize the expected value of the complete data
log-likelihood p(D, Z|w), where theexpectations takenw.r.t. the

posterior distribution over the hidden dafa P(Z|D, w).

Find a single parameter vectar, for all hidden variable settingg (since
we don’t know the true values &f), but while doing thisweight the

Importance of each particular settiggby the posterior probability
P(Z|D,w).
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E-M Algorithm

Given the current parameter settwg® do:

E-Step:
EstimateP (Z|D, w°¢), the posterior distribution oveZ, given the
observed dat® and current parameter settingg?.

M-Step:
Obtain new parameter valuag“* by maximizing

Ep(z1p,wetd) log p(D, Z|w)).

Setw°!? .= w"*" and go to E-Step.
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General Probabillistic State Space Modeling

W Introduction

W Autoregressive models

W Linear state space models

W Dynamical systems

® Non-linear state-space models
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Definition

A state space model consists of an unobserved state sequence
X; € X, with time indext =0, 1, 2, ..., and an obserevation sequence
Y, eV, witht=1,2, ..

State space&’ and) are either open or compact subsets of an
Euclidean space;

The state sequenée,, X, Xo, ... IS a Markov chain;

Conditionally on{ X, X4, ...}, the'Y,'s are independent and
Y, depends oiX; only;

Graphical representation:

——O—0—

v w
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Definition (cont.)

Conditional independence. For example, given X, andY; are
Independent with each other;

The observations could include both input variablés,c U/, and
output variablesy,; € V;

As input variableslU; are usually observed without noise corruption;
Graphical representation:
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Probabilistic Modelling

Initial state densityXy ~ ag(x);
State transition densities

Xt’(Xt—la ut) ~ at(X,Xt—h ut);
Observation densities
Yi|(x¢,us) ~ be(y, x¢, uy).
The joint density of Xo.+, U1, Y1) IS given by

t
p(XO:t7 ui:¢, Y1:t) — CL()(X()) H as(Xsa Ug, Xs—l)bs(YS7 Xs us)-

s=1
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Probabilistic Modelling (cont.)

The joint density factorizes into a product of terms containinly o
pairs of variables—

The joint processX,, Y;) is also Markovian;

The observation¥; alone are not Markovian—
The dependence structure¥f could be more complicated than for
a Markov process;

The conditional density(xg.¢|y1.¢+) IS proportional to the joint
densityp(xo., y1:¢) —

Conditionally onY;.; = y1.¢, the state variables are still Markovian
(so-called conditional Markov process);

Densitiesp(x;|y1.+) store all information about the conditional
Markov process up to time

The IPS are densitiasver the state space!!!
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Statistical Inference

The main tasks we need to solve are

1. Inference about states based ora stretch obbserved valueg,,.;
for a given model (i.ea; andb, known);

2. Inference about unknown parameters; andb;.

Inference abouX; giveny;.; is called
1. predictionif s > t,
2. filteringif s =t,
3. smoothingf s < t.
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Autoregressive Models

Autoregressive models for univariate time senesys, ...:
Autoregressive (AR) models;
Autoregressive-moving average (ARMA) models

Autoregressive-moving average with exogenous terms (ARMAX)
models
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AR Models

The modely; = ¢1yi—1 + dayr—2 + .. + Ppyr—p + wi
whereg¢, ¢o, ..., ¢, are constants and, is a Gaussian noise series

with mean zero and varianee ;

Definex; = (¢, x¢—1, ..., Te—p+1)T;

Definew,; = (wy,0,...,0)T andH = (1,0, ..., 0);
The state equatiornk;. | = Fx; + w; with

/Cbl Q2 Cbp—l Cbp\
1 o --- 0 0
F= . ; | € RPZE

\o0 -~ 0 1 0/
The observation equation; = Hx;
The state evolution is ‘contaminated’ by noise!
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ARMA Models

Consider the univariate ARMA(2, 1) models:

Y = P1Yi—1 + P2yi—2 + Owi—1 + wy.

whereg¢q, ¢o, andf are constant, ana;s are Gaussian noise with
zero mean and varianeg,

Definex; = (v, £4_1)7;

. 1 1
State equationk; = (¢1 ) X¢—1 1 Wy ( > ;

¢2 0 0
DefineH = (1,0) — Observation equationy; = Hxy;
Verification
Ty = @Q1T4—1 + Ti—2 + wy
Ti—1 = @Qaxy—1 + 0wy
T2 = @Qaxi_9+ 0w

3
|
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ARMAX model

An univariate ARMAX(p, q) model p > q):
p q
yr = Lug + Z DjYt—j + Z Ojwi—j + wy
j=1 j=1
State equation:

1 1.0 --- 0 (91\ (F
(ot oy o))

0
1
0 0 f 0
Xt4+1 = : T . 9 W + Ut
q :
dp1 0 0 - 1 0 ;

\% 00 - 0 \) \O)

Observation equationy = (1,0,0, ..., 0)x;
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Linear State Space Model

® Definition

m Kalman Filtering

m Kalman Smoothing

W Parameter Estimation
W Examples
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Definition

Linear-Gaussian assumption:

ao(x) = N(x;p0,¥0)
CLt(X, Ui, Xt—l) — N (X7 FXt—l + TUt, E)
bt(y7utaxt) — N(Y7th + FUt,R)

wherex; andug arep x 1 vector,y; areq x 1 vector,u; arer x 1 vector,
F, >y andX arep x p matrix, R areq x ¢ matrix, H areq x p matrix,, T
andI’ arep x r matrix.

Xg = po+wo; wo~N(wp;0,%0)
x; = Fxy 1+ Tu+wy; wy ~N(wy;0,X)
y: = Hxy+Tu+vy vi~N(vi;0,R)
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Kalman Filtering

Recall that the conditional densitipéx;|y;.;) do store all
iInformation about the state space model up to ttrre-

p(xely1:) = N(x¢; )¢, Pt\t)§

Attt = O, mt|t — 0 andPt|t = ZO,
At time t, predictive mean and covariance matrix:

My—1 = E [x¢|y1:0-1]
EFxi(—1 + Tu + we|y1:e—1]
Fm; 1 1+ Tuy
Pt|t—1 = K [(Xt - mt|t—1)(xt — mt|t—1)T]
= K “F(Xt—l — mt|t—1) + Wt][F(Xt—l - mt\t—l) + Wt]T]
= FP; 1y FT+ X
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Conditional Gaussians

If ., andX: are partitioned as follows:
_ |1
=

211 212]
> —
[221 2199

and

The distribution ofr; conditional onxs = a:
mean vector

M= p1 + 21222_21 (a— p2)
and covariance matrix

3 =31 — 212355 o
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Kalman Filtering (cont.)

The innovations:
€&t =yr — E [Yt|Y1:t—1] =yt — lu — Hmt|t—1
Conditional or;, the conditional Gaussiak'(x;; my;, P;,) can be
derived from the joint Gaussial (xy, €;; My, ¢,, Px, ¢, );
K [Et] = 0;
var(e;) = HP,,_ HT + R;
COV(xy, €¢[y1:¢) = Py HT;
My = My—1 + Kee
Pt|t — Pt\t—l - KtHPt\t—l

The Kalman gainK; = (cov(xy, €|y1.¢)) - (var(e;)) L.
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Kalman Filtering (cont.)

Interpretation ofK;:

30

25

20

15

10
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Kalman Smoothing

Given the observation sequenge,, ..., yr}:

p(XtIYLT) — N(Xt; My |, Pt|T)7

The conditional meansy,_;; andmy - are those values that
maximize the joint Gaussian denspyx; 1, X:|y1.7);

The conditional joint density(x;_1, x¢|y1.7) has the forms

p(Xt—hXt\YLT) X p(Xt—l\th—D 'p(Xt\Xt—l);

Suppose we have,r avaiable, than,_; 7 Is found by maximizing

N (x—1;my 1, Py_qpe—1) - N(myp; Fxy 1, 3);
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Kalman Smoothing(cont.)

my_q 7 = 0y_q—1 + Jt—l(mt|T — mt|t—1);

P,y =Py 1+ 1(Pyp — Pyy—1)I/_1;

Ji—1 =P FT (Pt|t—1)_1;

Interpretation of;_1:
ReCa” thaﬂ?t|t_1 — FPt_1|t_1FT —l— z,
Note thatJ;_; =1, if F is a identity matrix and& = 0.

There are many equivalent forms of the smoother in the literaturey The

differ numerically with respect to speed and accuracy.
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Parameter Estimation

The parameter set to estimatéis- {F, >, R};
The incomplete data likelihood

T
—2log Ly(©) = ) log |var(e;(© \+Zet )Tvar(e,(9)) e (O));

The complete data likelihood
—2log Lx v(©) = log|Zo| + (x0 — 10) "% " (x0 — f10)

+  log|X| + Z(Xt —Fx;1)"S ' (x¢ — Fxy1)
=1

T
+ log|R|+ Y (v — Hx) T2 (y¢ — Hxy);
t=1
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Parameter Estimation (cont.)

The @ function at iteratiory
Q (@\@(j_l)) =K [—210g Lxv(©O)|yi,.., T,@(j_l)} ,

which is an upper bound dng Ly (©);
The algorithm

1. Initialize ©®©) and setj = 1;

2. Computdog Lv (©U~1);

3. (E-Step) Perform Kalman filtering and smoothing usaig 1
4. (M-step) Use the smoothed estimatas, -, Py, ...) tO

compute®©) that maximizes) (6|0U~1);
5. Repeat Steps 2 - 4 fosg Ly (©U 1) to converge.
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Example

Lt
Yt

OTt—1 + Wy
Lt + Wt,

with ¢ = 0.8,02 = 1.0, ands? = 1.0.

8
6,
47
2 o
o )
o ©f\% e
0 ° °
° I L4
°
°
[ ] ® °
2t ° ®
®
° ° °
-4 hd !
0 10 20 30

state
® data

Theory 2??8 Applications of State Space Models for Time Series Data — a Plevéama- p.84/98

!
40

! ! !
50 60 70

!
80

!
90

100



Example (cont.)

Predictive estimates of state

10

Filtered estimates of state

Smoothed estimates of state

Time

10
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Example (cont.)

log likelihood

191.6

1915}

191.4

191.3

191.2

191.1

191

10

iteration

20

30
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Non-linear state space models

m Extended Kalman filtering
® Non-linear filtering

® Non-linear smoothing

W Parameter estimation

m Example
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Extended Kalman filtering

Nonlinear state equation:
X = F(Xt_l) + W, and Y; =HX,; + V;

Linearization:

dF (X
X = Pu(Xe-1) = B+ | T2 | (Xeamygye)
My _1)t—1
Prediction:
My—1 = F(mt—1|t—1)
dF (X,) dF (X)) 17
P = P >
tjt—1 [ iX, ]mtltl t—1[t—1 [ iX, . +
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Extended Kalman filtering (cont.)

Problems:
m Conditional densities are assumed to be Gaussian;

2 ‘ ‘ ‘ 2
18} 1 18}
16 16
1.4 14

=

N
T

=

N
T

marginal posterior
-

o
0

o o
e o2}
marginal posterior
© © o
» [«2) 2] [
T T T

o
N

0.2f

-0.5 0 0.5 1 15 -15 -1 -05 0 0.5 1 15
x(t=3.5) X(t=3.5)

® No information about approximation error
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Extended Kalman filtering (cont.)

Particle approximation gf(z)
Draw N samples fronp(x): {z1, 22, ..., N };
Approximatep(x) by p(x) ~ + S, 6(x — a3);
Capability of approximating multimodal distribution;
WhenN — oo, p(z) — p(x).

If a direct draw is impossible, Markov Chain Monte Carlo or
Seqguential Monte Carlo.
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Non-linear filtering

filtering densities:f;; (x:) = p(x¢|y1:);

prediction densities for statgf;+1|t(xt+1) = p(X¢t1|V1:t);
filtering: fis — fitip — frs1je+10

Markov transition: f;  1);(x¢41) = [ a¢ (X441, %) fie(x)dx

Bayes' formula:p(x|y) = 7 5((yy|§)).§((;‘))dx s

i (Yit1, Xt-l—l)ft—|—1|t(xt-|-1)
fbt(Yt-l-laX)ft—l—l\t(X)dX

prediction densities for observation:

ft+1|t+1(Xt+1) =

Pey1jt(Yit+1]y1e) = /bt(thX)le‘t(X)dx;
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Non-linear filtering (cont.)

The standard particle filtering
1. Generatéz}, ....,z)') fromag(z) and set = 0;
2. We havgz;, ....,z3) for an particle approximation o (¢);

3. Generatg?], |, ~ a41(x], ), j =1, ..., N, to obtain an particle
approximation off; . (z¢+1);

_ : bew1 (T L Yes1)
] L t+1 t+1> + .
4. Compute weights; | = 5 -"mr " =5

5. Generatd; with p[I; = k] = A{H and setz:{+1 to a?fil;

6. Increase by 1 and go back to Step 2.
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Nonlinear Filtering (cont.)

Predictive density
likelihood

observation
T T @7 T \m
before filtering
weights
1 i after filtering
UlH” A e e e gemmeces

Theory and Applications of State Space Models for Time Series Data — a Peveamna p.93/98



Nonlinear smoothing

——O—0—

v

at+1(Xt, Xt—l—l)ft|t(xtb’1:t)
ferip(Xer1]y1:e)

Bayes’ formula

p(Xt|Xt+1aY1:T) — p(Xt|Xt+17Y1:t) —
Markov transition

p(Xt|Y1:T) = /p(Xt|Xt+1aY1:T> 'p(Xt+1|Y1:T)dXt+1-
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Nonlinear smoothing (cont.)

Smoothing densities:

At+1 (Xt7 X)

for(xe) = fyje(xt) Frotn (%) + fryr(x)de.

f1|o ft|t—1 ft+1|t fT|T—1
M | M M M
r a‘o f1|1 ft|t ft+1|t+1 fT|T
B \ B B
Y
(X, [%,5:y]) PX[X,, 1Y)
f1|T <—" M ft|T A\—ftﬂw M M I fT|T
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Non-linear smoothing (cont.)

We have(xt|t,

fie(x¢).To generate:, T givena’

t|t) fort =1, ..., T representing filtering densities

117 WE sample from

gt(x) X at-l-l(xaxi+1|T)ft\t(x‘y1:t)

N
X at—l—l(xaxi_|_1|T) ) {bt(xayt) Za’t(xztax)} )

1=1

using accept reject method, with the index as auxiliary vagiabl

1. Generatd uniform on{1,..., N} andx from a(z! Ty 11 T);

2. Generaté/ uniform on[0, ¢]. If U < by(z, y¢ ) a1 (x, xt+1\T)

puta;t|T x.
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Parameter estimation

Assume now that both; andb; depende on a finite dimensional parameter
©. The the likelihood oP given the observed serigs.

T T
p(01:216) = []pwlonise) =TT [ b 915 ) f 1 (alyns1: ©)da,
t=1 t=1

Each factor on the right is obtained as a normalization durindjltee
recursion.

/bt(xath@)ft|t—1($|y1:t—1a Jdr = — th Lt 17yt

Maximization can be done by a general purpose optimizatioorhgn.
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Parameter estimation(cont.)

Since the joint likelihood of the observations and the hidskates can be
written explicitly, using the EM algorithm is natural.In the E-ste have
to compute

Q(©,0") =E |logp(zo.1, y1.7; Oly1.7, ©']
where®’ is the current approximation to the MLE. In the M-step, we

maximizeQ (O, ©") with respect t®. The functionQ (0, ©") contains the
terms

E [log ai(zi—1, 24 0)|y1.r,©']  and E [log by (s, ye; ©)|y1.1, ©']

which can be computed by using smoothed partif;lg,j =1, ...,N.
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