
School of
Computer Science

Industry Mentor Scheme

Orientation

Suzanne M. Embury, Robert Haines
Duncan Hull, Caroline Jay, Markel Vigo

School of Computer Science
The University of Manchester

Manchester, UK

School of
Computer Science

A bit out us
Suzanne Embury, Senior Lecturer

 (course leader)

 Caroline Jay, Lecturer

 Markel Vigo, Lecturer

•  Duncan Hull, Lecturer

 Rob Haines, Software engineer

School of
Computer Science

Our students
•  ~200 in each academic year studying Computer

Science

•  Typical A-level offer is AAA (including Maths with
significant Pure Maths component)

•  Not necessarily any programming experience on
arrival in year one

School of
Computer Science

Software Engineering at UG

Semester 1 Semester 2

Year 1 … Java programming …
… Team project (web + DB) …

Year 2 Year-long compulsory course unit
(software engineering)

Year 3
3 elective course units

(agile s/w engineering; user experience;
s/w engineering in a connected world)

School of
Computer Science

Drivers for Change

Software
Engineering

at UG

Changes in
industry
practice

Changes in
tool sets

Industry
Club input

Current
students’
feedback

Industrial
Placement
Skills Audit

Survey of
Competitor
Institutions

School of
Computer Science

Skills Audit from Placement Students

Software testing

Adding functionality to existing code base

Knowledge transfer/systant role

Working in distributed/overseas team

Maintaining an existing code base/support role

Database application development/SQL

Working to strict deadline/on mission critical task

C#

JavaScript

Writing technical documentation

Migrating/porting legacy code

Version/source control

Debugging code (written by self and others)

Requirements gathering/interviewing

Building new tools/applications from scratch

Presenting ideas/demos to others, persuading people

Java

Data warehousing/ETL/data feeds

Autosys/scheduling of batch work

Test automation

Costing and pricing of work/estimating effort

Technical design/collaborative design

Performance benchmarking/optimisation of code or processes or workflows

ASP/JSP

User acceptance testing/stress testing

Agile methods

Writing shell scripts

0 5.5 11 16.5 22

6
6
6
6
6
6
6

7
7
7
7
7

8
8
8
8

10
10

11
11
11

13
16

17
18

19
21

Number of Students Reporting Using this Skill on Placement

Skills Audit from our Industrial Placement Students

2012/2013 Academic Session

Suzanne M. Embury

September 2014

This document presents the results of a software engineering skills audit I undertook from the final reports produced by our undergraduates on industrial

placement in the 2012/2013 academic session. The aim was to identify what skills our students were being asked to apply while on placement, to discover any

gaps in our current software engineering teaching. Our students already impress while on placement, and acquire skills quickly once in post. But I wanted to

see whether there were any recurring themes in the skills students talked about in their reports, to check that we are not missing any opportunities to prepare

our students better for placement (and, importantly, interviewing for placements and graduate scheme positions) than we currently do.

To carry out the analysis, I read through 40 reports, noting down any software engineering skills that were mentioned by each student as being a part of their

work on placement. While doing so, I normalised student vocabulary and grouped closely related skills into single, more broad skill descriptions. I counted

each skill only once per report, even if students mentioned using it on several different projects. Since the list of skills was created bottom up, from the skills I

encountered in the documents as I read through them, rather than through some directed top-down design process, it is a bit of a mess, containing a broad

variety of skills, at diverse levels of abstraction. It should also be noted that I recorded only skills that had a software engineering aspect. Skills involving

hardware construction, financial auditing, and other domain-specific skills were not recorded.

While performing the audit, I tried hard not to read between the lines and infer the presence of skills that were not mentioned directly by students. This means

that it is fairly safe to assume that almost all the skills in the final result table are under-reported. For example, students often reported working on the

construction of a new piece of software without saying explicitly that they were involved in the gathering of requirements for the tool, its design or its testing. In

these cases, I resisted counting these implied skills in the results, even though it is very likely that these skills were applied, as it seemed preferable to have a

reliable under-estimate of the usage of these skills than an unreliable estimate that might be either an over- or an under-estimate the prevalence of the skill in

question.

The chart below summarises the results for those interested in the big picture. It shows the skills that were mentioned most frequently by the 40 students

whose reports I read (all skills mentioned by more than 5 separate students).

The full results from the skills audit are shown on the following pages. This table also contains a column where I noted whenever students remarked that their

studies had prepared them well for exercising the skill in question, and a further column for remarks from students that they felt they had not been well-

prepared by their two years of undergraduate study. I also ended up using this column to note the breakdown of skills when I agglomerated two or more

detailed skills into a broader category. Since I expect this document to be consumed primarily by humans, I have kept this bunching of information, at the risk

of discriminating against any computational intelligences that might in the future try to interpret the data.

The table at the very end of the document contains selected comments taken from the reports where I felt some interesting point was being made. Again,

these were collected bottom-up, with no very clear aim in mind, just in case something interesting emerged when viewed as a whole. I'm not sure these

comments tell us anything very coherent, but have left them in for the curious.

School of
Computer Science

Survey of Competitor Institutions
•  Often not much public information

•  Some examples of innovative modern practice
–  e.g. Sheffield, Royal Holloway, UCL

•  Lots of UML
•  Focus on OO programming/design

•  Lack of coverage of modern technical practices
–  And some not so modern ones…

School of
Computer Science

Software Engineering in the Lab
Typically:
•  Small systems (few hundred lines)
•  Fixed requirements
•  Mandatory requirements
•  Code built from scratch…
•  … on top of well-behaved black-box components
•  Testing considered optional

•  Will never actually be used

School of
Computer Science

Software Engineering in the Wild
•  Typically

–  Very large systems
–  Uncertain and changing requirements
–  Need to make value judgments about what to

deliver
–  Adding functionality to an existing code base
–  Using legacy components/data/technologies
–  Testing essential

–  Must deliver value
–  Must be maintainable in the long term

School of
Computer Science

This Semester
Based around a large open source system
•  Java
•  Multi-user
•  Multithreaded
•  Client-server architecture
•  TCP oriented network protocol
•  mySQL and H2 persistence engines
•  Open systems architecture designed for modification
•  Complex business logic/business rules

School of
Computer Science

Stendhal Multi-Player Adventure Game

https://stendhalgame.org/ Massively multiplayer online role-playing game (MMPORG)

School of
Computer Science

Our Students Must
•  Work in teams of 6 to:

–  Fix bugs
–  Add smallish new features
–  Re-architect a part of the system to add

maintainability

•  Use code quality and test coverage tools
•  Use CI server
•  Use a simple Git workflow
•  Use code review techniques
•  Choose a subset of the requirements

School of
Computer Science

Teaching Methods
•  One 2-hours workshop per week

–  Hands on

•  2 hours of scheduled “group working” time

•  No face-to-face lectures
–  Selected lecture material provided as vodcasts for

students to watch in their own time

•  Each team has an industry mentor working with them
through the year.

•  (semster 2 only for now, semester 1 AND 2 later)

School of
Computer Science

Why a mentoring scheme?
•  Increase the industrial relevance of the course
•  Provide students with an opportunity to discuss

–  The realities of being a software engineer
–  Typical tools and techniques used by software

teams
–  The current jobs market
–  The range of career options available
–  How they might continue to succeed in their careers
–  The mentor’s own personal experiences
–  Anything you think we’ve missed!

•  Tap into all your experience

School of
Computer Science

What’s in it for you?

•  Provide input into training the next generation
•  Gain exposure to a cohort of potential recruits

–  Build relationships with students
–  See how teams and individuals work
–  Improve the quality of the entire cohort
–  Help embed good software engineering practices

early
–  Advertise your company/jobs/graduate scheme

School of
Computer Science

Dos and don’ts
•  Please do

–  Talk to students about how they are approaching the
lab coursework

–  Talk about how you might approach the coursework
in industry

–  Talk about general processes and tools
–  Talk about your experiences and areas of interest

•  Please don’t
–  Get hijacked into actually working on their lab

coursework
–  Worry about “shy” students – we have ice breakers
–  Worry about the syllabus

School of
Computer Science

How it will work
•  http://cs-mentoring.eventbrite.co.uk

~40 mentors
 drop out?
 first: week 4: greeted by ambassador
 second: week 8: either here or on-site
 third: (optional) week 11 showcase

•  Mentoring guide

School of
Computer Science

Who has signed up so far?
In no particular order:

•  BBC, IBM, ARM Holdings
•  Imagination Technology
•  NCC Group, Avecto, Autotrader
•  Data Centred, Barclays, RentalCars
•  AppSense, CDL, Sage
•  LateRooms, Web Applications UK, On The Beach
•  (everyone here today)

•  Northern Powerhouse / Southern Powerhouse?

School of
Computer Science

Over to you
•  Three break-out groups

•  What you want from the mentoring scheme
–  Strengths
–  Weaknesses

•  Any other issues we haven’t thought of or covered

