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Abstract 

This paper proposes a (conceptual) simulation framework for a collaborative 

management in power distribution grids. By combining insights from electrical 

engineering as well as sociology, this framework highlights the emergent, socio-

technical character of the energy system. The interplay of social and technical 

aspects is further emphasised by referring to the “energy traffic light” concept as 

an exemplary case of application. 
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1 Introduction 

The energy system is undergoing a paradigm shift. So far the grid was a 

centralized system, dominated by a few large power generation plants and a 

large-scale distribution of electricity to end-users. The load-flow was pre-

determined, and the roles of producers and consumers were clearly defined. 

However, renewable energy sources (RES) and new low carbon electricity 

technologies seriously challenge this conventional energy supply system. On the 

one side, PV, wind and small-scale cogeneration plants are producing electricity 

and heat in a distributed way. On the other side, end-users are becoming more 

flexible and are producing their own electricity as well. This transition results in 

new uncertainties and risks, mainly because electricity generation and 

consumption will become harder to predict and unforeseen power fluctuations 

will become more likely. Especially power distribution grids will be facing these 

situations, since they host a large share of installed RES and constitute the 

connection point to the end-user [1]. 

A possible solution to cope with these challenges is the application of new types 

of collaborative (information) management and governance measures [2]. One 

important topic in this context is the use of local flexibilities from end-users for 

grid management issues. Since these flexibilities can also be used for market 

operations or for ancillary services, there is a need to design a proper framework 

to organize the use of flexibilities.  

Here, if not before, it becomes apparent that the energy system constitutes a 

socio-technical system that encompasses technical as well as social elements and 

interactions: Social actors with variable rationality (e.g. transmission system 

operator – TSO, distribution network operator – DNO, energy retailers, and end-

users) interact and collaborate within a technical infrastructure system (e.g. 

through energy purchase/sell, active and reactive power exchange or ancillary 

services). 

This paper presents the first step in modelling an interdisciplinary framework for a 

collaborative information management, which is applied to a power distribution 

grid and pays particular attention to the emergent, bottom-up behaviour of the 

power grid. Furthermore, the framework aims at formulating what-if scenarios for 

future electrical distribution networks, conducting experiments with different 

system configurations and modes of governance.  

The proposed framework is based on design principles of agent-based modelling 

and simulation (ABMS) as well as a sociological macro-micro-macro-model [3]: 

Governance measures do not necessarily have a direct impact on the dynamics of 

a socio-technical system, but rather influence decision-making of strategic actors 

at the micro-level (e.g. end-users), which then leads to emergent effects on the 

macro-level (e.g. power-surplus, power-shortage or even black-outs). 

Consequently, this paper aims to provide a conceptual framework for linking 

(technical and social) simulation models from electrical engineering and sociology 

in order to depict such an emergence. As far as the authors’ knowledge is 

concerned, no previous work deals with collaborative management in power 
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systems, with special focus on distribution grids and end-users, using a socio-

technical approach. 

The paper is organized as follows: Section 2 gives an overview of the proposed 

simulation framework and describes the involved models and their 

interdependencies. Section 3 elaborates on a practical problem within the context 

of the “energy traffic light” which can be addressed by the proposed simulation 

framework and serves as an exemplary case of application. In the end, the paper 

gives concluding remarks and provides insights into next steps. 

2 Conceptualisation of the framework 

As indicated previously, macro-micro-macro-models of socio-technical systems 

may help to understand the (bottom-up) dynamics of socio-technical systems and 

to detect emergent, unintended effects. We propose a (conceptual) simulation 

framework for the governance of a power distribution grid (Figure 1), consisting 

of the following six simulators. 

 

The end-user simulator describes the decision-making of consumers: Based on 

individual preferences and values, actors decide (habitually or rationally) to invest 

in technologies, switch tariffs, change their energy consumption behaviour or 

follow recommendations from energy-monitors (e.g. smart meters or mobile 

applications). These decisions are furthermore ‘translated’ into load values, which 

primarily serve as inputs for other modules (cf. building simulator). 

The grid and information management simulator primarily represents controlling 

interventions on part of DNOs and therefore the standard ‘operating business’ of 

grid management. Controlling interventions require comprehensive knowledge of 

the grid, which is why this module also entails the flow of data and information 

Figure 1: Concept of the overall framework 



4 
 
 

between different actors. Relevant actors in this module are therefore DNOs, 

virtual power plant operators (VPPOs) and meter operators. 

The simulator for the power distribution grid is used for load flow calculations, i.e. 

the current status of the grid. This status is the result of an equation system; 

values generated by end-users (i.e. loads), producers (i.e. decentral feed-in), feed-

ins from the transmission grid and DNO commands are inputs for these equations. 

DNOs, in turn, use the output data from this module to ‘interpret’ and manage 

the grid’s status. 

A high potential for load shifting on end-user level can be found in the heat 

sector, making the precise modelling of space heating and hot water demand 

necessary. Therefore, we include a building simulator to represent the actual 

‘behaviour’ of a heating system. Furthermore, this building module also has to 

depict different technological entities and characteristics, e.g. the energy 

management system (based on Model Predictive Control), the type of the building 

as well as the technological equipment (i.e. standard gas heating devices, 

photovoltaic plants, batteries, heat-pumps and micro co-generation plants). 

The market simulator encompasses energy retailers’ and VPPOs’ portfolio of 

tariffs for end-users and does not represent a typical market simulation (i.e. 

pricing structures based on demand and supply). 

Framework conditions are externally given and consequently not open to 

influences from other simulators. They encompass pre-parameterized values and 

trajectories, e.g. weather/temperature or electricity prices on the European 

Energy Exchange (EEX). Furthermore, political regulations or feed-in capacity from 

the transmission grid also represent external inputs. Consequently, framework 

conditions basically help to characterise scenarios. The emergence of framework 

conditions is, however, not subject of analysis here (i.e. political negotiations etc.). 

Coupling multiple simulators, using the mosaik framework1, allows us to combine 

insights from electric engineering and sociology rather easily while simultaneously 

keeping the framework flexible. Consequently, the key challenge is to define 

relevant information flows between the different simulators. In this paper, and for 

reasons of space, we will only describe three simulators here in detail: End-user, 

power grid and building. 

2.1 Simulator 1: Power grid 
The goal of the power grid simulator is to represent an electric distribution 

network within the simulation environment. It includes models of relevant 

electrical components of a power distribution grid such as busbars (nodes), 

transformers, and lines. Detailed models for loads, storage and generators are not 

handled in this simulator (see simulator building). It also contains information 

regarding grid topology i.e. how and through which lines different busbars are 

interconnected with each other, and which generators, loads and/or transformers 

are connected to each busbar. A set of nonlinear equations describes the 

relationship between electrical components in a compact way, and from now on, 

                                                           
1 https://mosaik.offis.de 
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this is called the power grid model. Values of end-user consumption (loads), 

power feed-in from distributed generators and overlaying voltage networks, as 

well as control commands from the distribution network operator (DNO) serve as 

inputs for this power grid model. With this information, and based on some initial 

conditions, the power grid simulator computes a load-flow calculation and 

provides resulting power flows for each line, and respective voltage magnitudes at 

each busbar. The output of the simulator would allow to determine if, for the 

given initial conditions and inputs, voltage and loading values are within safety 

limits. 

In the power grid model, it is assumed that only one reference node (slack busbar) 

exists, and that the remaining nodes are PQ nodes, i.e. nodes with known active 

and reactive power feed-in/consumption and unknown voltage magnitude and 

voltage phase. Active and reactive power values are coming from a different 

simulation instance: the building simulator. Accordingly, in the co-simulation 

framework the PQ nodes are the coupling points between the power grid 

simulator and the building simulator. 

2.2 Simulator 2: Building 
The building simulator involves models of flexible and non-flexible residential 

appliances, as well as models for distributed generators. These models can be 

static models – no dependency with previous states, or dynamic models – there is 

a dependency between actual state and previous state, e.g. a storage unit. Hence, 

the task of the building simulator is to solve local residential electrical and thermal 

power flow equations, to give the total electrical power consumed or injected at a 

specific node, and to compute the resulting state of the dynamic elements (for 

example state of charge of a thermal energy storage or room temperature of the 

building). These set of equations describing the behaviour of corresponding 

building appliances is called the building model. 

Because of their flexible operation to balance intermittent power from 

renewables, residential heating systems play an important role in the current 

work. Therefore, heating demand and heating supply in residential systems 

requires detailed modelling. For accounting the demand, the building model uses 

some dynamic equations to represent the thermal dynamic behaviour of a 

residential building. This helps to consider building storage capacities as well. 

Residential buildings imply two types of objects: single-family houses, and multi-

family houses. Clearly, buildings must contain not just thermal, but also electrical 

appliances. For example, a single-family house can embrace two energy sectors. In 

the electrical sector, there can be a rooftop photovoltaic plant, and the normal 

inflexible residential loads – lights, refrigerator, washing machine, stove, etc. In 

the heating sector, an example will be a heat pump with respective thermal 

energy storage. Here, the heat pump will be the coupling element between the 

electrical and the heating sector. Figure 2 presents one possible residential 

configuration [11]. The power generated by the PV plant can flow into the grid 

(up) through the point of common coupling (PCC), or can flow to the household 

load and the heat pump (down). The heat pump is directly connected to the 



6 
 
 

Figure 3: MPC based energy management system 

thermal energy storage (TES). The stored energy can be used for hot water or for 

space heating purposes. 

 

As residential units can follow different operation schedules, there is an energy 

management system (EMS), whose task is to compute such operation schedules. 

Different approaches have been proposed to perform this task, being 

optimization-based approaches the most widely accepted. Particularly model 

predictive control (MPC) is gaining relevance because of its prediction nature and 

robustness against uncertainties [4–9]. MPC is a concept from the control theory, 

which consists in optimizing the future operation of a system by computing 

optimal trajectories for its inputs taking into account impact of future 

disturbances. This optimization is performed over a finite time window by 

applying suitable numerical optimization and forecast methods within a receding 

horizon control scheme [10]. Therefore, the EMS contains one MPC unit. 

Figure 3 shows an MPC based energy management system schematic structure 

for buildings. 

 

Setting of the simulation parameters for the building model, such as type of 

appliances present in the building, technical characteristics of the appliances, MPC 

Figure 2: Residential setting with PV-Heat pump [11] 
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prediction horizon, MPC sample time, etc., happens just once at the beginning of 

the simulation. The building model gets weather input data from the external 

conditions module, and additionally, data from the end-user simulator serve as 

input for the model. Specifically, these input data contain information regarding 

end-user building operation preference (self-consumption or energy costs 

minimization), and comfort limits (temperature set-points for the heating 

appliances). With this information, the MPC starts the optimization and concludes 

by giving the resulting optimal values for electrical consumption of the flexible 

loads, power generation for the distribution generation units, and charging and 

discharging power for the storage systems. After balancing electrical power flows 

within the residential system, the output of the building simulator is the total 

power consumption/injection of the considered residential setting. This is treated 

as a single variable, which denotes consumption if the variable is larger than zero, 

or generation if the variable is negative. This variable is then forwarded to the 

power grid simulator, which reads the variable as the power at the specific node, 

where the instance of the building simulator is connected. Once all the solutions 

from all building simulator instances are available, the power grid simulator can 

start with its power flow calculation, and a new simulation cycle starts. To sum up 

building appliances’ operation mode may change over time depending on end-

user preferences. For instance, end-users may decide to respond to an incentive 

from the DNO, or change comfort settings. These kinds of actions are computed in 

the end-user simulator, and are the coupling points between end-user simulator 

and building simulator. 

2.3 Simulator 3: End-user 
The purpose of this simulator is to represent energy consumption behaviour by 

applying sociological theory of action. By doing this, we firstly aim at obtaining a 

more detailed representation of individual load curves: Heterogeneous end-users 

take decisions, generate local loads and affect the state of the power distribution 

grid. Secondly, this simulator is needed to depict consumers’ reactions to 

different types of feedback, e.g. information and incentives. 

Models of this simulator are end-user agents, i.e. private households.2 The main 

issue of modelling energy consumption behaviour is its high complexity: Electricity 

is a hidden good, deeply embedded in daily energy services [12]; its use is 

furthermore strongly influenced by an individual’s norms, practices, available 

devices and contextual factors [13]. Consequently, when looking at energy 

consumption and environmental behaviour, “people move between […] two 

extremes, from simple heuristics to complex cognitive strategies, depending on 

the significance of the decision that they have to make […]” [14, p. 14] – which 

indicates some sort of variable rationality. 

2.3.1 The Model of Frame-Selection 

For our purposes, we decided to use and adapt the model of frame selection 

(MFS) [15]. The main benefit of this model is its ability to implement actors’ 

                                                           
2 Industrial end-users, however, are also of major importance here and will be 
implemented in the future. 
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definition of a situation as well as their variable rationality. In our opinion, these 

two (sociological) ideas are highly relevant for understanding energy consumption 

behaviour and furthermore compatible with insights from other disciplines, like 

social-psychology. 

According to our adaption of the MFS, the decision-making process of end-users is 

divided into three sequential stages: frame-selection (“What kind of situation is 

this?”), script-selection (“How am I expected to behave?”) and action-selection 

(“What am I going to do?”). In the frame-selection, agents define their current 

situation, which results in the formulation of a perceived need to act (in short, 

medium or long-term; or not at all). In the script-selection, end-users choose 

programs of action that are perceived as relevant or suitable in the respective 

situation / frame (like investing or changing / maintaining behaviour). Lastly, in 

the action-selection, the agent performs an actual activity that has direct impact 

on his performance and load curve (e.g. buy a more energy-efficient device, turn 

off devices or do nothing). Those changes serve as input for the building 

simulator. 

The variable rationality of actors is represented by taking two different modes of 

decision-making into account [15, p. 99]: The habitual, automatic-spontaneous 

mode (AS-mode) and the rational, reflecting-calculating mode (RC-mode). Each of 

the three selection-processes above is carried out in one of these two modes. 

When deciding in AS-mode, agents primarily refer to internalised values and 

spontaneous situational awareness, i.e. fixed mental models, which are defined as 

expectations about people, social roles, events or behaviours and thus include 

“moral norms, conventions, routines, and emotional or cultural reaction schemes 

held by the actor” [15, p. 99]. In RC-mode, agents consciously and systematically 

process available sources of information in order to assess and select a suitable 

behaviour. Consequently, this mode can refer to any rational-choice theory: We 

apply Esser's model of subjective expected utility (SEU) here [16].  

In sum, the MFS assumes that each actor interprets a specific situation differently 

and chooses from several behavioural alternatives, which he assumes to be 

appropriate for the given situation. By parametrization of the MFS variables, 

different types of agents – characterized based on literature review or surveys – 

can be implemented, e.g.: “eco-conscious”, “careless spendthrift”, or “hesitating 

technophobes” [17].  

As standard behaviour, end-users act in the habitual AS-mode and select a 

‘default’ frame, script and action (i.e. no perceived need to act and doing 

nothing): Although this constitutes a deviation from the original MFS, where no 

default choices exist, we wanted to emphasize that people tend to “anchor” on 

the status quo rather than processing all relevant information [18]. 

An end-user changes his behaviour, however, when one of the following two 

conditions applies. An agent may select another frame, script or action in AS-

mode, when he is intuitively certain that a specific behaviour is suitable. This is 

determined by calculating a “match” for each respective frame, script or action 

option: If the actor's frame, script or action match exceeds a certain threshold or 
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is sufficiently higher than other matches, the option with the highest match is 

chosen. 

Furthermore, an agent may switch from AS- to RC-mode, when he is not certain 

which behaviour is appropriate. If an actor's match for frame, script or action in 

AS-mode is not sufficiently high and an actor is ‘dissatisfied’, he switches to RC-

mode and starts to deliberately reflect upon his behavioural options. 

2.3.2 Dissatisfaction and learning 

The presence of ‘dissatisfaction’ constitutes another addition to the standard 

MFS: We share the assumption of Davoudi et al. that changes in energy 

consumption behaviour are triggered when routines are perturbed [14]; and that 

feedback mechanisms may help to facilitate such a disruption by making energy-

related routines visible, for example through information given by energy 

monitors. Feedback mechanisms thus help to reveal a “feedback-standard gap” 

[12], which represents a mismatch between current practices (e.g. actual 

electricity usage of a household) and pre-existing aspirations (e.g. saving 

electricity). Consequently, this mismatch “[…] may indicate a level of 

dissatisfaction with current practices […], and may act as the springboard for 

change [...]” [13, p.119]; own emphasis in italics]. Dissatisfaction is hence a result 

of dynamic learning processes that facilitate behavioural changes, which is not 

explicitly included in the standard MFS.  

In order to determine a level of dissatisfaction, a range of feedback information, 

provided by energy monitors or electricity bills, are compared [12]: for example 

the comparison between data on current electricity usage and (1) personal 

historical usage data or (2) average consumption of neighbours (“social 

comparison”) [19]. Deviations are then actor-specifically weighted and, if high 

enough, result in dissatisfaction. 

A graphical representation of our adapted MFS can be found in Figure 4. 

 

3 Exemplary case of application: Energy traffic light 

An important topic within the context of the energy transition is the use of local 

flexibilities (provided by end-users) for grid management issues. Since these 

flexibilities can also be used for market operations or for ancillary services, there 

is a need to design a proper framework to organize the use of flexibilities 

regarding grid situation. One suggestion is to organize grid operation in different 

Figure 4: Adapted Model of Frame-Selection 
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phases, following a “traffic light” principle [20]. The green phase (i.e. mode of 

market competition) and the red phase (i.e. mode of strong control to prevent 

critical collapses) are more or less well defined and are not relevant for the 

purpose of this paper. 

In the yellow stage, more interestingly, DNOs have to interact with providers of 

local flexibilities in order to avoid the red stage, for example by offering (financial) 

incentives or by restricting market activities and the provision of ancillary services. 

It is in this phase, where a socio-technical analysis may provide new insights on 

how the DNO has to interact with end-users and other entities. Therefore, the 

energy traffic light concept serves as an exemplary case of application in order to 

show the functionality of the proposed socio-technical simulation framework. 

In the end-user simulator, the three phases or signals are represented as different 

sources of feedback or information: The signals are visible through energy-

monitors (smart-meters or mobile applications) and may include electricity 

pricing, usage data or recommendations of actions for end-users. Consequently, 

the phases may not only trigger actions of end-users, but also inform end-users in 

their decision-making. With the help of the MFS, it is possible to capture 

heterogeneous behaviours, because each (type of) end-user interprets a specific 

situation (i.e. a phase) differently and reacts accordingly.  

Finally, building and grid simulation are influenced by those decisions, potentially 

resulting in a new grid state. Consequently, the DNO has to react to this emergent 

situation, and determine whether the intended goal, i.e. avoiding the red phase, 

was achieved.  

4 Discussion and conclusion 

The paper at hand presented a conceptual simulation framework for a 

collaborative management in power distribution grids, emphasizing the 

interaction between DNOs and end-users. By combining insights from electrical 

engineering as well as sociology, this framework highlights the emergent, socio-

technical character of the energy system. The interplay of social and technical 

aspects is further emphasised by referring to the “energy traffic light” concept as 

an exemplary case of application: DNO’s interventions in the yellow phase do not 

necessarily have a direct impact on the grid state, but rather influence decision 

making of heterogeneous actors at the micro-level (e.g. end-users), which then 

leads to emergent effects on the macro-level (e.g. power surplus or shortage).  

Next steps will include the definition of simulation scenarios, the technical 

description of co-simulation features and the conduction of experiments. The 

results will provide insights into future modes of governance and operation of 

distribution grids, including the end-user as an active participant in the energy 

system. 
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