Electron Paramagnetic Resonance (EPR) Spectroscopy
 (a.k.a. ESR, EMR)

Lecture I. Basic principles of EPR spectroscopy

Eric McInnes \& David Collison, EPSRC UK National EPR Facility \& Service Photon Science Institute, The University of Manchester eric.mcinnes@manchester.ac.uk david.collison@manchester.ac.uk

Basics of the experiment

-Fixed frequency, magnetic field swept -back-to-front! Disadvantage.

-Detected as 1st derivative of absorption signal -Zeeman modulation

EPR Spectroscopy

-The electron spin equivalent of NMR
-Requires unpaired electrons ($\mathrm{S} \geq 1 / 2$)

- information on the environment of the unpaired electron \rightarrow electronic structure, geometric structure, physical properties, reactivity, dynamics, etc.
-EPR transition = flipping the electron spin. E.g. for $S=1 / 2 \ldots$
 $\mathrm{m}_{\mathrm{s}}=+\mathbf{1 / 2}(\uparrow)$
$\Delta \mathrm{m}_{\mathrm{s}}= \pm 1$
$m_{s}=-1 / 2(\downarrow)$

The resonance condition
C

$$
\begin{aligned}
& g=\frac{h v}{\beta_{e} H_{\text {res }}} \\
& =714.5 \frac{v(\mathrm{GHz})}{H_{\text {res }}(\mathrm{G})}
\end{aligned}
$$

$\mathrm{h}=$ Planck's constant
$\begin{aligned} \mathrm{h} & =\text { Planck's constant } \\ & =6.6261 \times 10^{-34} \mathrm{~J} \mathrm{~s}\end{aligned}$
$\beta=$ Bohr magneton
$\begin{aligned} \beta_{\mathrm{e}} & =\text { Bohr magneton } \\ & =9.2740 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}\end{aligned}$
$=4.6686 \times 10^{-5} \mathrm{~cm}^{-1} \mathrm{G}^{-1}$

Frequency vs. Field

-Microwaves appropriate for convenient lab magnets
-Can use different fixed frequencies.
-Advantages to both up- and down-frequency/field

Frequency band	$\mathrm{v} / \mathrm{GHz}$	$\begin{aligned} & \mathrm{H}_{\text {res }} / \mathrm{G} \\ & \text { for } \mathrm{g}_{\mathrm{e}} \\ & \hline \end{aligned}$	
S	4.0	~ 1400	
(most common)	9.0	~3200	Electromagnets
Q	34	~ 12000	\mid
W	94	~ 33000	\longleftarrow Supercon magnet

The g-value

 the magnetic moment of the electron due to its spin (ang. mom.). [Nb : gyromagnetic ratio $\gamma_{\mathrm{e}}=\mathrm{g}_{\mathrm{e}} \beta_{\mathrm{e}} / \hbar$; magn. mom., $\mu_{\mathrm{e}}=-\mathrm{g}_{\mathrm{e}} \beta_{\mathrm{e}} \sqrt{ } \sqrt{ } \mathrm{S}(\mathrm{S}+1)$
\bullet In real materials, measured $g \neq \mathrm{g}_{\mathrm{e}}$.

$$
\mathrm{g} \propto 1 / \mathrm{H}_{\mathrm{res}} \Rightarrow \text { higher } \mathrm{g} \text { at lower field. }
$$

- ...because of orbital angular momentum contribution to the magnetic moment.
- Can be:

$$
\xlongequal{4}
$$

(i) Ground state (T or E terms) \rightarrow large orbital moment; need to treat spin-orbit split states. Complicated, and won't consider further here.

Electron Paramagnetic

 Resonance (EPR) Spectroscopy(a.k.a. ESR, EMR)

Lecture II. Isotropic (fluid solution) spectra

Eric McInnes \& David Collison, EPSRC UK National EPR Facility \& Service Photon Science Institute, The University of Manchester
eric.mcinnes@manchester.ac.uk david.collison@manchester.ac.uk

The g-shift

(ii) Mixing with excited states via spinorbit coupling (SOC) \rightarrow small orbital moment $\propto 1 / \Delta E$.
$\mathrm{g} \sim \mathrm{g}_{\mathrm{e}}$ for orbital singlets (A or B terms). Normal range $3>\mathrm{g}>1$.

$$
g=g_{e}-\frac{a^{2} n \lambda}{\Delta E}
$$

Often discussed as the g-shift:

$$
\Delta g=g-g_{e}
$$

Trends in g-shift
 Consequently:
 $$
g=g_{e}-\frac{a^{2} n \lambda}{\Delta E}
$$

(i) Organic free-radicals: usually large $\Delta \mathrm{E}$ (colourless), small λ.
hydrocarbon radicals $\rightarrow \mathrm{g} \approx 2.002-2.003$
N/O-based radicals $g \approx 2.003-2.006$
S-based radicals $\mathrm{g} \approx 2.007-2.010$
(ii) transition metal ions: small $\Delta \mathrm{E}$ (coloured; crystal field splittings), big $\lambda \rightarrow \mathrm{g}$ significantly different from g_{e}.
(iii) g can be $<$ or $>\mathrm{g}_{\mathrm{e}}$.

Coupling with filled orbital $\rightarrow+$ ve contribution to $\Delta \mathrm{g}$.
Coupling with empty orbital \rightarrow-ve contribution to $\Delta \mathrm{g}$.
e.g. $\left\{\mathrm{V}^{\mathrm{IV}} \mathrm{O}\right\}^{2+} \mathrm{d}^{1}$ typical $\mathrm{g} \approx 1.9$
e.g. $\mathrm{Cu}^{2+}, \mathrm{d}^{9}$ typical $\mathrm{g} \approx 2.1$

Hyperfine Coupling

$\mathrm{m}_{\mathrm{s}}=+1 / 2$
-If electron spin interacts with nuclear spin (I)
\rightarrow hyperfine structure, with coupling constant A (or a).

- Analogous to nuclear spinnuclear spin (J) coupling in NMR.
- $2^{\text {nd }}$ selection rule: $\Delta \mathrm{m}_{\mathrm{I}}=0$
-Each transition corresponds
to a given value of m_{I}
$\rightarrow 2 \mathrm{I}+1$ transitions.

Triangles for $\mathrm{I}>\mathbf{1 / 2}$ nuclei

$$
n \times(I=3 / 2) ; \text { add up } 2 I+1=4 \text { numbers }
$$

$$
n \times(I=5 / 2) ; \text { add up } 2 I+1=6 \text { numbers }
$$

$$
\begin{aligned}
& \frac{n}{} \\
& \hline \frac{1}{2} \\
& \hline 2 \\
& 3
\end{aligned} 1
$$

Can observe coupling to quadrupolar nuclei, even if in low symmetry

"Superhyperfine" = ligand hyperfine

- Unpaired electron must be partly delocalized out to ${ }^{14} \mathrm{~N}$ nucleus. -Superhyperfine coupling is direct evidence for covalency in coordination compounds.

Units for hyperfine coupling

Electron Paramagnetic Resonance (EPR) Spectroscopy
(a.k.a. ESR, EMR)

Lecture III. Meaning of hyperfine interaction

- Measured in field units, but coupling constant is an interaction energy -Need to convert to energy (or equivalent) units...

Hyperfine (e-n) Mechanisms

-Dipolar (through space): Depends on e-n distance and orientation w.r.t. applied field.
$\mathrm{A}_{\text {dip }} \propto 3 \cos ^{2} \theta-1 \quad$ - Averages to zero in fluid solution.

-Spin density at the nucleus (Fermi contact): Direct contribution only possible if upe is (at least partly) in an s-orbital (p,d,f orbitals have nodes at the nucleus).
-Spin-orbit coupling [$\propto \Delta \mathrm{g}$]: important for d-block
\Rightarrow Should only see s-electron density in solution, but...

Spin Polarisation

-Unpaired electron interacts differently with the \uparrow and \downarrow electrons in a filled orbital
$\bullet \rightarrow$ the paired electrons have slightly different spatial distributions.

-Slightly favoured by spin correlation (cf. Hund's rule)
-"excess" spin up at C; spin down at H - including nucleus.
\cdot Or, configuration interaction between $\mathrm{p}_{\mathrm{z}}{ }^{1} \sigma^{2}$ with excited states -Similar arguments for observation of ${ }^{13} \mathrm{C}$ splitting or, e.g., metal hyperfine in d-block complexes

McConnell analysis

Calculation of spin population of $2 p_{z}$ orbital in π-radical from hyperfine coupling to bound H

Structural information from hyperfine

-Radical identification
-Geometric structure can be inferred, e.g..

Electron Paramagnetic Resonance (EPR) Spectroscopy

(a.k.a. ESR, EMR)

Lecture IV. What happens when we immobilise the sample?

Eric McInnes \& David Collison, EPSRC UK National EPR Facility \& Service Photon Science Institute, The University of Manchester
eric.mcinnes@manchester.ac.uk david.collison@manchester.ac.uk

Sample phase and orientation

-in fluid solution molecules tumbling rapidly (mostly) on timescale of experiment.
-Magnetic field "sees" average orientation of the molecule.
\rightarrow "isotropic" spectrum.
-...but molecules are not, in general, isotropic. They look different from different orientations.
-As with ALL spectroscopies, spectrum depends on the orientation of the molecule (e.g. polarisation of optical transitions). EPR easy to measure on powders, single crystals, frozen solutions etc.

-e.g. sq. planar $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{D}_{4 \mathrm{~h}}\right)$ $\bullet g$ and A will depend on orientation of molecule (can define by C_{4}) w.r.t. H

g anisotropy

-Remember $g \neq g_{e}$ due to excited state orb. ang. mom. via SOC.
-Different excited states contribute to magnetic moment (hence g) in different orientations. Easiest to see by example.
-Consider a square planar $\mathrm{Cu}(\mathrm{II})$ complex, $\mathrm{D}_{4 \mathrm{~h}}$ symmetry.

$\mathrm{O}_{\mathrm{h}}{ }^{\left({ }^{2} \mathrm{E}\right.}$)

Upe in $x^{2}-y$

Hand-wavey approach

- Non-zero orbital ang. mom. if orbitals can be transformed by rotation about an axis. E.g...
(i) $x^{2}-y^{2}$ transforms to $x y$ via R_{z}

$\bullet \therefore$ contribution to magn. moment along z from xy excited state - and contribution to \mathbf{g} measured with \mathbf{H} parallel to \mathbf{z} - " g_{z} "

$$
g_{z}=g_{e}-\frac{a^{2} n \lambda}{E_{x^{2}-y^{2}}-E_{x y}}
$$

Result...

- $\mathrm{D}_{4 \mathrm{~h}}$ symmetry $\mathrm{Cu}(\mathrm{II})$ complex.

$\cdot g$-values are anisotropic
- Can predict that $\mathbf{g}_{\mathbf{z}}>\mathbf{g}_{\mathbf{x}}=\mathbf{g}_{\mathbf{y}}\left(>\mathbf{g}_{\mathrm{e}}\right)$
\bullet Exercise: z^{2} ground state for d^{9} (e.g. Jahn-Teller compressed $\mathrm{Cu}^{\mathrm{II}}$). \cdot Should find $g_{x}=g_{y}>g_{z}\left(=g_{e}\right)$

Pattern of g-values tells you about the orbital in which the unpaired electron is located.

The magic pentagon

-Contributions to g -values summarised in...

$$
g=g_{e}-\frac{a^{2} n \lambda}{\Delta E}
$$

- Start at a vertex for a given ground state
-Links give contributions to g_{i}-values
-Coefficients n also given

Single orientation spectra
(e.g. single crystal)
-Each spectrum looks "isotropic"
-e.g. measure xz plane for our $\mathrm{D}_{4 \mathrm{~h}} \mathrm{Cu}^{\text {II }}$ example; $\mathrm{g}_{\mathrm{z}}>\mathrm{g}_{\mathrm{x}}$

How does this affect spectra?

-Fluid solution: field "sees" AVERAGE orientation
-Measure average \mathbf{g}-value, labelled $\mathbf{g}_{\text {iso }}$

$$
g_{\text {iso }}=\frac{g_{x}+g_{y}+g_{z}}{3}
$$

-Powder spectrum is the SUM over ALL orientations
-Features observed at turning points in road map
-Different shapes and intensities due to summation

Electron Paramagnetic Resonance (EPR) Spectroscopy
 (a.k.a. ESR, EMR)

Lecture V. Information about electronic structure

Eric McInnes \& David Collison, EPSRC UK National EPR Facility \& Service Photon Science Institute, The University of Manchester eric.mcinnes@manchester.ac.uk david.collison@manchester.ac.uk

-Each g-feature is split by hyperfine.
-Hyperfine coupling is also anisotropic, determined by symmetry.

Powder spectra: A vs. g-anisotropy

-If A > separation between g in field units, then "parallel" and "perp" regions will overlap. Very common.
\bullet E.g. typical $\{V O\}^{2+}: g_{z}=1.93, g_{x, y}=1.98, A_{z}=170 G, A_{x, y}=60 G$

More on hyperfine

-Fluid solution: field "sees" AVERAGE orientation
-Measure average A-value, labelled $\mathbf{A}_{\text {iso }}$

$$
A_{\text {iso }}=\frac{A_{x}+A_{y}+A_{z}}{3} \quad \begin{aligned}
& \text { In energy }\left(\mathrm{cm}^{-1}\right) \text { or } \\
& \text { frequency units (MHz) } \\
& - \text { NOT field units. }
\end{aligned}
$$

- $\mathrm{A}_{\text {iso }}, \mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}$ and A_{z} can be either sign. No direct information in spectrum, BUT...
-Can get relative signs from averaging to $\mathrm{A}_{\text {iso }}$.
- Can also use $\mathrm{A}_{\text {iso }}$ to determine unresolved anisotropic component

Hyperfine Anisotropy

Remember:

-Spin density at nucleus: A_{s} - $\mathrm{SOC}\left[=\mathrm{P} \Delta \mathrm{g}_{\text {iso }}\right]$

[^0]-Dipolar, $\mathbf{A}_{\text {dip }}$: Depends on e-n distance and orientation w.r.t. applied field.
\[

$$
\begin{aligned}
& \text {-In solid state, observe SUM of the isotropic and dipolar part. } \\
& \qquad \mathbf{A}=\mathbf{A}_{\text {iso }}+\mathbf{A}_{\text {dip }} \\
& \hline
\end{aligned}
$$
\]

Dipolar part of hyperfine

$$
A_{d i p} \propto \mu_{e z} \mu_{n z} \frac{\left(3 \cos ^{2} \theta-1\right)}{r^{3}}
$$

H

$$
\begin{array}{ll}
\theta=0^{\circ} & 3 \cos ^{2} \theta=+2 \\
\theta=90^{\circ} & 3 \cos ^{2} \theta=-1
\end{array}
$$

Any dipolar interaction has form $+2 \mathrm{a},-\mathrm{a},-\mathrm{a}$

Electron in a p_{z}-orbital

Anisotropic hyperfine \rightarrow composition of molecular orbitals!

1. J.R. Morton and K.F. Preston, J. Mag. Reson. 1978, 30, 577; P.H. Rieger, J. Magn. Reson. 1997, 124, 140

Electron in a $d_{x y / x^{2}-y^{2}}$ orbital

Hyperfine for unit Different angular

population of a d- factor for d-orbitals SOC (excited state) orbital.
 contribution.
Convenient to cast in terms of g-shifts, because these can be measured.

Electron in a $\mathrm{d}_{\mathrm{z}^{2}}$ orbital

$$
\begin{aligned}
A_{z} & =A_{\text {iso }}+P_{d}\left[+\frac{4}{7} a^{2}-\frac{1}{3} \Delta g_{z}-\frac{17}{21} \Delta g_{x, y}\right] \\
A_{x, y} & =A_{\text {iso }}+P_{d}\left[-\frac{2}{7} a^{2}-\frac{1}{3} \Delta g_{z}+\frac{17}{42} \Delta g_{x, y}\right]
\end{aligned}
$$

Determining spin density distribution

- $\mathrm{A}_{\text {iso }}=\left(\mathrm{A}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}}\right) / 3 \Rightarrow \mathrm{~A}_{\mathrm{x}, \mathrm{y}}$ and A_{z} must be opposite sign.
- Assume $A_{z}-$ ve \rightarrow-ve a^{2}. Not physically meaningful.
$\cdot \mathrm{A}_{\mathrm{z}}+\mathrm{ve} \rightarrow \mathrm{a}^{2}=0.45$, i.e. 45% of spin density in $\mathrm{P} 3 \mathrm{p}_{\mathrm{z}}$.
$\mathrm{P}_{\mathrm{p}}=+306 \times 10^{-4} \mathrm{~cm}^{-1}$ for ${ }^{31} \mathrm{P}(100 \%$ nat. ab., $I=1 / 2)$

Example: covalency in $\mathrm{Cu}^{\mathrm{II}}$ complexes

Example: covalency in $\mathrm{Cu}^{\mathrm{II}}$ complexes

$\mathrm{A}_{\text {iso }}=76 \times 10^{-4} \mathrm{~cm}^{-1}$
$\mathrm{~g}_{\mathrm{z}}=2.260, \mathrm{~g}_{\mathrm{x}, \mathrm{y}}=2.050$
$\mathrm{~A}_{\mathrm{z}}=189 \times 10^{-4} \mathrm{~cm}^{-1}, \mathrm{~A}_{\mathrm{x}, \mathrm{y}}=20 \times 10^{-4} \mathrm{~cm}^{-1}$

$\mathrm{A}_{\text {iso }}=75 \times 10^{-4} \mathrm{~cm}^{-1}$
$\mathrm{g}_{\mathrm{z}}=2.085, \mathrm{~g}_{\mathrm{x}, \mathrm{y}}=2.035$
$\mathrm{A}_{\mathrm{z}}=175 \times 10^{-4} \mathrm{~cm}^{-1}, \mathrm{~A}_{\mathrm{x}, \mathrm{y}}=38 \times 10^{-4} \mathrm{~cm}^{-1}$

- $\mathrm{A}_{\mathrm{iso}}, \mathrm{A}_{\mathrm{z}}$ and $\mathrm{A}_{\mathrm{x}, \mathrm{y}}$ all same $\operatorname{sign}(-\mathrm{ve})$
-CFT predicts $\mathrm{x}^{2}-\mathrm{y}^{2}$ ground state $\rightarrow \mathrm{a}^{2}=0.77$ for O-donor complex
$A_{z}-A_{x, y}=P_{d}\left[-\frac{6}{7} a^{2}+\Delta g_{z}-\frac{5}{14} \Delta g_{x, y}\right]$
$\bullet \rightarrow \mathrm{a}^{2}=0.48$ for S-donor complex
- Spin much more delocalised (i.e. greater covalency) for S-donor

[^0]: $\} \mathbf{A}_{\text {iso }}$

